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Distributed computing moves the capabilities of cloud computing in data centers closer to 

intelligent IoT devices, towards the edge.1 This can increase performance and efficiency, but it is 

essential in industrial settings for optimizing time-critical industrial processes because critical 

control processes that do not respond in time can become dangerously unstable. 

This document describes a framework for distributed computing in the edge that brings 

computation, networking and storage closer to data producers and consumers for the Internet 

of Things (IoT). It is intended for IoT system architects and implementers who are working with 

edge systems comprising IoT devices, edge computing nodes, networking equipment and data 

center servers. It: 

• provides a structural and functional framework for distributing computing in the edge, 

• defines the key architectural concepts employed for distributed computing in the edge, 

• specifies the essential capabilities of this edge system’s elements, 

• pays special attention to essential security and management functions and 

• describes the essential interfaces among these elements. 

System architects can use the framework2 as an architectural template that helps derive a 

concrete distributed computing architecture. Others, such as operations technologists, 

information technologists, network and business managers may also find it useful to understand 

the essential elements of distributed computing in the edge. 

 

1 The IIC Vocabulary defines edge to be the “boundary between the pertinent digital and physical entities, 

delineated by IoT devices” and edge computing as “distributed computing that is performed near the 

edge, where nearness is determined by the system requirements”. That is, “edge” is used in the former 

as a boundary and in the latter as a region. This report uses “at the edge” to mean at the boundary 

(though that boundary is fuzzy), and “in the edge” to mean in the region. Similarly, “to the edge” 

connotes distribution away from data centers. 
2This document was derived from the “OpenFog Technical Framework” compiled by the members of the 

OpenFog Consortium, which joined forces with IIC in January 2019. That document described functional 

characteristics and interfaces of fog elements, fog nodes and fog systems existing within the Data Center-

to-Things Continuum. IIC pivoted this framework to distributed computing in the edge. 
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1 WHY DISTRIBUTE COMPUTING TOWARDS THE EDGE? 

Edge computing moves the capabilities of cloud computing typically associated with data centers 

into the edge, where they are closer to IoT devices. With edge computing, data, networking, 

storage and computing are distributed throughout layers of edge computing nodes from IoT 

devices to the data center, distributing the economies of scale of cloud capabilities throughout 

the system. The migration of cloud capabilities into the edge allows data, storage and 

computation to gravitate to where it can be handled most efficiently, whether in a data center 

or the edge. 

1.1 BUSINESS BENEFITS 

Cloud computing capabilities in data centers offers flexibility and scale to enterprises. We can 

extend those benefits towards “things” in the real world, towards the edge. The flexibility to 

decide where to perform computation on data improves performance and reduces costs. 

Computing in data centers induces bandwidth costs as data is transmitted, while sensors are 

generally limited in terms of what computations they can do. Computing in-between can collect 

data from multiple sources, fuse and abstract as needed, and compute right there. Computation 

can take place near to the repositories of the data, rather than consuming bandwidth shifting the 

data to a data center. The propensity for computation to take place “near” the data is called data 

gravity, and is a key motivator for distributing computing.  

The flexibility to decide where to store data improves performance and reduces costs. Moving 

data takes time and costs money. It may also expose to security and privacy risks. Data 

segmentation based on compliance boundaries imposed by regulation in different jurisdictions 

supports disciplined security. If data is held on premises with no connection to the internet, it 

cannot be compromised by the proverbial hacker in his parents’ basement. 

Performance of IoT applications is often an overarching catalyst for moving previously data-

center-based workloads to the edge. Executing close to where the data is generated in the 

physical world, rather than passing data up to a data center and back down, reduces the time lag 

(latency) and indeterminate time (jitter) between receiving data and acting on it. Faster is usually 

better, but it is essential for optimizing time-critical industrial processes. Critical control 

processes that experience too much latency or jitter can become dangerously unstable.  

When several logical functions execute on single or multiple physical devices, the owners of edge 

systems can serve multiple customers on a shared infrastructure, increasing deployment 

efficiency. This is called multi-tenancy. 

Multi-tenancy enables scalability, so that devices in different rooms and floors of a smart 

building, for example, can be aggregated into a smart neighborhoods and districts of a city. Scale-

up is the addition of computational, memory, storage and networking resources. Scale-out is 
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when more same-function computing resources are deployed in the data center or the edge. 

(And we may also scale down and scale in). 

To respond to varying application mixes and workloads, we need elasticity to be able to add or 

remove resources quickly by reconfiguring the system to execute on more or fewer edge 

computing nodes. This elasticity supports, for example, first responder teams when computation 

and connectivity needs fluctuate in an emergency. This agility to accommodate rapid change is 

important in many edge systems. 

Redundancy, and the associated fault-recovery software, creates a fault-tolerant system that 

enables critical services to continue in mission- and life-critical applications, even as nodes or 

links fail. A single degraded node or link can be routed around and failures avoided—one of the 

original motivators for the internet itself.   

Distributed computing in the edge is synonymous with edge computing. It is fundamental to 

distributed applications such as connected cars, enabling a platoon of cars traveling at high speed 

to communicate and then travel closely together, avoiding accidents and saving road space.  

Distributed computing in the edge also enables new applications and features, which can 

increase efficiency, revenue and value for the customer. For example, smart grids are already 

feeding distributed energy resources into the power network, reducing energy costs and even 

providing discounts to customers. 

There are some specific issues that must be considered when distributing computing to the edge: 

Truck-roll: Adding or replacing equipment outside the data center is costlier as it requires 

logistics. Moreover, failures at the edge may require more urgent repairs. (Failed resources in a 

data center don’t always need to be replaced due to high redundancy. Modern management 

software for data centers simply retires failed equipment and carries on without it.) 

Form factor, packaging and hardening: Equipment is packaged differently in the data center from 

outside it. Data centers are typically large, environmentally controlled, high-security buildings 

with arrays of equipment racks, whereas edge equipment is often in less controlled environments 

such as a vehicle, street-corner cabinet or on a factory floor, requiring better hardening and 

resilience to environmental extremes and power variations. 

Tampering: Equipment outside a locked data center needs better tamper protection, for 

example, locked cabinets and the exclusion of external ports that could heighten security risks. 

Remote monitoring and management of edge equipment is a challenge. For example, over-the-

air software updates for cars requires resilience to packet loss and interrupted connections to 

ensure successful updates.  
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Network bandwidth: Bandwidth to transport data between IoT devices and data centers is often 

expensive and less than 100% reliable. By moving computation and storage nearer to where it is 

used, less data is moved through the network. 

Energy efficiency: Edge equipment is often constrained by available energy, especially if run on 

batteries or renewable sources. Higher power also creates cooling complexities. 

Data residency may be governed by policy and regulation, such as the Health Insurance 

Portability and Accountability Act (HIPAA privacy) or government prohibitions. Some data, such 

as trade secrets, cannot leave the premises.  

These factors, especially when taken together, motivate distributing computing to the edge. 

What was once limited to the data center can now be distributed, enabling, in particular, digital 

transformation in the industrial internet of things (IIoT). 

1.2 DESIRED PROPERTIES 

To gain these benefits at low risk, distributed computing in the edge requires several properties: 

Above all, an IoT system must be trustworthy. This property is the conjunction of security, privacy, 

safety, reliability and resilience, and is especially important in industrial IoT systems where lives, 

limbs and the environment are at stake.  

Manageability: Distributed computing in the edge has many widely dispersed, interconnected 

nodes. These nodes participate in a network and each run multiple applications and services 

which, in turn, interact with each other to deliver system functionality. Each node, IoT device and 

application service needs to be discovered, commissioned, monitored, updated and 

decommissioned over the lifetime of the system.  

Composability is the ability of edge elements to aggregate structurally and functionally with one 

another. Edge elements must be separable and orthogonal to permit the substitution of one 

element associated with an interface without affecting other elements in the system. In turn, the 

resulting application services may be composed to participate in higher-level applications, 

improving time-to-market as interoperable elements are quickly assembled into various systems 

that can perform the required functions. This can create a multi-party software marketplace and 

helps avoid supplier lock-in. 

Autonomy: edge nodes can effectively operate (at least temporarily) in isolation. When 

connectivity to a data center or adequate computational throughput is unavailable, tasks can be 

executed within nodes away from the data center, or queued until connectivity is restored.  

Interoperability is the ability of edge elements to exchange information with one another and 

interpret this information consistently. Seamless interoperability between edge computing 

infrastructure services needs technical, syntactic, semantic interoperability and openness, as 

described in detail in the sidebar below.  

https://www.iiconsortium.org/pdf/Managing_and_Assessing_Trustworthiness_for_IIoT_in_Practice_Whitepaper_2019_07_29.pdf
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Openness means that all the requirements and implementation attributes of the elements can 

be implemented by anyone. Any supplier is free to produce their own versions of these elements 

that can interoperate and interchange with elements provided by other suppliers. Openness 

supports interoperability. 

Levels of interoperability are defined in the IIC’s Industrial Internet Connectivity Framework (IICF) 

by what can be exchanged. The levels build one upon another: 

Technical interoperability is the ability to exchange information as bits and bytes (e.g. pencil 

scribbles), assuming that the information exchange infrastructure (e.g. pencil and paper) is 

established and the underlying networks and protocols are unambiguously defined. 

Syntactic interoperability is the ability to exchange information in a data structure (e.g. using 

words from a language), assuming that a common protocol to structure the data is used (e.g. 

the language’s alphabet and rules of grammar) and the structure of the information exchange 

is unambiguously defined (e.g. whitespace, punctuation). Syntactic interoperability requires 

that technical interoperability be established.  

Semantic interoperability is the ability to interpret the meaning of the exchanged data 

unambiguously as information in the appropriate context. For example, a “sentence” such as 

“There are three” could mean anything. Three apples? Three cars? Three degrees? Three leaf 

blowers? 

For example, a service hosted in the edge receives shared data over a link (technical) and 

unmarshalls the sequence into a data structure with an array of 2 by 100 floating point values 

(syntax). It then passes the array to a health monitoring service that runs an event-detection 

algorithm on the array where the first row is the time history and the second row is a temperature 

(semantic). Syntactic interoperability is critically important also because it allows software to 

share data structures, so they can work together even if written in different languages or 

transmitted by frameworks built by different vendors. It also enables generic tools that can 

introspect and process the data. With both syntactic and semantic interoperability, edge 

computing services can exchange and consistently interpret data with other edge services, IoT 

devices and the data center. If that data exchange is further built upon open standards, systems 

or software from multiple suppliers can reasonably be expected to interoperate. 

These properties, and the technical mechanisms used to support them enable the business 

benefits that can be derived from distributed computing in the edge. 

  

https://www.iiconsortium.org/IICF.htm
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2 A FRAMEWORK 

A distributed computing framework is a configurable and scalable architecture that can extend 

cloud computing capabilities from data centers to the edge. Edge computing nodes and the 

communication paths between them are two essential parts of an edge system. 

An edge system spans IoT devices, sensors and actuators, and IoT gateways, mediating those 

devices with the internet, servers and data ingestion services at the data center. These elements, 

taken together, make up an edge system. Edge systems perform the three primary functions of 

IoT: collecting, analyzing and acting. They collect data from sensors and other IoT devices. They 

analyze this data and reach conclusions about what must be done and finally, they act, by storing 

results or sending messages to actuators and other IoT devices to control the physical world.  

Edge computing is distributed computing performed near the edge, where nearness is 

determined by system requirements. Edge computing brings many of the important capabilities 

of cloud computing to the edge. Edge is the boundary between the pertinent digital and physical 

entities, delineated by IoT devices. This contrasts with data centers as the data processing and 

storage resources are closer to where data is produced from sensors (in smart buildings, traffic 

lights, oil rigs, airliners and cars) or consumed for actuating devices. Some standards for edge 

computing architectures are already in commercial deployment, for example ETSI Multi-access 

Edge Computing (MEC). 

A data center is a facility containing a collection of connected equipment that provides 

communication, computing and storage resources. In the context of an edge system, a data 

center provides computation as a service, using virtualized computing and the economies of scale 

that come with it. It could be public (e.g., Amazon Web Services, Microsoft Azure and Google 

Cloud Platform), private or a hybrid or multi-cloud approach. Cloud computing is a paradigm for 

enabling network access to a scalable and elastic pool of shareable physical or virtual resources 

with self-service provisioning and administration on-demand. Cloud computing was traditionally 

associated with data centers, but can now be applied at the edge (and offered as software stacks 

by some of the same providers).3 

The data center and its servers, networking equipment and storage engines constitute the 

highest layer of the distributed computing framework. They are typically located in secure 

facilities, and managed as part of a large, scalable service provider, private or hybrid network. 

They are interconnected with the edge computing nodes via high speed data networks (typically 

fiber optical facilities in the 100Gb/s throughput range). Many of the highest-level analytics, 

storage and management functions that support edge systems reside in data centers. Data 

centers often implement hyperconverged infrastructure, a coherent combination of virtualized 

 
3 There are many stacks, both proprietary and open. These are the most popular. See: 

https://aws.amazon.com/greengrass/, https://azure.microsoft.com/en-us/products/azure-stack/edge/ 

https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/products/azure-stack/edge/
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computation, networking, and storage subject to unified management, often implemented on 

inexpensive servers. These techniques can also be applied away from the data center. 

 

Figure 2-1: Illustration of Multi-layer Edge System 

The IoT devices at the bottom of Figure 2-1 include all sensors, actuators and other endpoint 

devices in the IoT system, such as user interfaces, smart mobile devices, displays, industrial 

control systems and integrated intelligent endpoints. Sensors measure physical parameters 

associated with the real world, digitize these readings and send them through the layers of edge 

computing nodes toward the data center. Some implementations complete all their processing 

and storage activities in one or more layers of edge computing nodes, while others process and 

store their data in a data center. When the processing is complete, actuators can optionally 

accept digital commands from the data center and edge computing nodes and change physical 

parameters in the real world, creating a closed-loop control system. Together the IoT devices 

interface the digital world to the physical world.  
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Some IoT devices can be quite simple, for example, a temperature sensor that generates one 

reading a minute. Others can be complex, for example, a security camera that has significant 

processing power capable of executing local video analytics, or a control system that accepts set 

points as inputs and uses those parameters to guide real-time processes. The more sophisticated 

IoT devices are, the more they are considered a conjunction of the raw sensor and a layer of edge 

computing node, integrated into a single physical and logical entity.4 

Edge computing nodes are individually addressable and manageable elements in the IIoT 

distributed computing system. They offer computation, networking, storage and control services 

closer to the data-producing sources or information-consuming users. 

Edge computing nodes are deployed in one or more layers between the IoT devices and the data 

center. Edge computing nodes in the same layers can communicate east-west, and with other 

layers north-south. They may also be grouped in clusters, so that a cluster may be managed 

collectively in the same way as a node. The number of layers and arrangement of clusters may 

vary from a few (as when IoT sensors are connected directly to the data centers) to a dozen or 

more (as in smart buildings and smart cities, in which devices in different rooms, wings, floors of 

a building and different neighborhoods of a city are organized into a deep continuum of layers). 

Fog computing refers to an architecture pattern for trustworthy, distributed edge computing that 

has been used previously, especially by the OpenFog Consortium (which joined forces with IIC in 

January 2019, and originated of some of the material in this document). Subtle distinctions that 

may exist between the terms edge and fog are not considered important in the marketplace, so 

we use “edge” exclusively.  

Our focus for distributed computing in the edge is everything between the lowest layer of the 

data center and the IoT devices shown in Figure 2-1. 

2.1 EDGE SYSTEMS 

One approach for an edge system comprises the functional components illustrated in Figure 2-2. 

Above the dotted line are the edge system-level functions that act across the entire system and 

are typically centralized and virtualized—usually in a data center.  

The system security management module manages security at the system level, and typically acts 

over multiple edge computing nodes. This is where system-level security policies, security 

analytics, crypto key management and similar centralized functions are implemented. Data 

centers are the preferred hosting location for this module. 

The system provisioning and management module is responsible for the centralized 

configuration and management capabilities of the edge system. It performs the centralized 

functions that are controlled by a network operations center, and distributes the control 

 
4 This is why the edge boundary is fuzzy. 
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messages and collects the status messages from multiple edge computing nodes. This module is 

typically also implemented in data centers. 

Below the dotted line are multiple edge computing nodes, arranged in overlapping layers. Within 

each edge computing node, the mainline flow of computation is in the center, the end-to-end 

security capabilities on the left (colored pink), and the management capabilities (gray) on the 

right. Subsequent diagrams decompose the functions within the trusted computing module, 

security and management boxes, respectively. The application execution environment runs 

application software.  

 

Figure 2-2: Functional Composition of an Edge Computing Node 

The trusted computing module is built on innately trusted hardware, and includes the trusted 

execution environment(s) with their chains of trust linked to the hardware root-of-trust to 

provide trusted application services to the rest of the edge computing node. There may also be 

mechanisms that allow third parties to verify the security state of the node, so that other edge 

computing nodes may verify that they can trust this node. This is the foundation upon which 

trustworthy applications can be built, secured and managed. The trusted computing module and 

its subcomponents are described in section 3. 

The end-to-end security module ensures communication and information security of the 

messages passing between the application services running in the edge computing nodes. Its 

security capabilities are interwoven into the framework. All the security functions are 
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continuously running in parallel with the mainline functions. The end-to-end security module and 

its subcomponents are described in section 4. 

The node management module is responsible for configuring, monitoring and updating the 

system hardware and software resources in an edge computing node. 

The application and service management module is responsible for deploying, configuring, 

monitoring, scaling and updating the application services residing in the edge computing node. 

The node management module and application & service management modules and their 

subcomponents are described in section 5. 

The application execution environments comprise application software that runs on the edge 

computing nodes. This is where the mainline software the user depends upon runs, and is the 

reason for deploying the edge system in the first place. The software running here may be 

untrusted, but the other components of the edge computing node and edge system “wrap” it in 

a way that makes the overall edge system trustworthy and manageable. 

2.2 COMMUNICATION PATHWAYS 

Communication between edge computing nodes is needed to distribute data and computation 

across nodes.  

For this approach, north-south communication links traverse layers from the data center to 

things, running in a generally vertical direction on Figure 2-1. These are the links that IoT devices 

use to talk to edge computing nodes, edge computing nodes use to talk to edge computing nodes 

on adjacent layers, or edge computing nodes use to talk to the data center. The bandwidth on 

each of these layers of links is influenced by the number of sessions and users supported on parts 

of the networks, and the size and generation rates of the data sets transmitted. Layers closer to 

the data center are more likely to be higher bandwidth pipes (such as fiber) and serve the 

aggregate traffic needs of a large number of devices below them. Links closer to the devices are 

more likely to be wireless or lower bandwidth copper links. Their bandwidth is often constrained 

by the available energy in small or battery-powered devices. As data moves up the layers, nodes 

along the way digest, analyze and aggregate it, balancing the capacity on all links. 

East-west communication paths in this architecture pattern run in a generally horizontal direction 

of Figure 2-1, orthogonal to the north-south links. They interconnect edge computing nodes on 

the same layer, and serve three primary purposes. 

First, they help to balance load between peer-level edge computing nodes. If one edge 

computing node is experiencing an overload, it can shuttle some of its traffic to a nearby edge 

computing node that is less heavily loaded. This balances the loads on the nodes in a layer and 

improves overall network resource utilization. 

Second, the east-west links improve resilience and fault tolerance. If a higher-layer edge 

computing node or the north-south link to it has failed, the blocked traffic can traverse one or 
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more east-west links and route around the problem. Also, for storage applications, these links 

can make and retrieve redundant copies of stored files across several nodes. In this way, if a 

single storage device or edge computing node fails, the redundant copies on other nodes on the 

same layer still have the critical data. 

Third, east-west links are used to build context across regions of a system. One edge computing 

node can send results to adjacent edge computing nodes, where they are fused with local results 

to create a larger context. As a concrete example, in a security camera network, each edge 

computing node analyzes the video from the cameras local to it and describes the positions, 

speeds and directions of recognized objects to adjacent edge computing nodes. They correlate 

objects on the boundaries of their cameras, fusing more views of the same object or tracking as 

it moves across the views of many edge computing nodes. This enhances situational awareness, 

and is more scalable and resilient than can be achieved with one huge edge computing node 

processing signals from all the cameras. 

2.3 DEPLOYMENT MODELS 

The topology of edge computing nodes can be optimized to match the requirements of the 

applications running on the network. Some networks will favor fewer layers between the data 

center and the IoT devices but support more peer-level IoT devices per layer. Other network 

deployments prefer to split their functionality between a larger number of layers, with fewer 

nodes in each layer.  

The choice of topology depends upon the specific requirements, performance expectations, and 

functional partitioning of the application services running on the edge computing nodes. Some 

are dominated by the need for high single-thread processing performance, and would benefit 

from more layers. Others can execute efficiently in many parallel edge computing nodes. Then, 

fewer layers with more edge computing nodes per layer makes sense. Storage operations can 

also be separated and optimized across multiple layers and nodes. The way that edge computing 

nodes are assembled should reflect the data gravity requirements of the applications. 

In a simple edge deployment, an edge computing node is an assembly of hardware and software 

components that implement the functions shown on Figure 2-2. Such a stand-alone edge 

computing node can be installed anywhere in the edge system to provide computing, networking 

and storage services close to data producers or consumers. 

In a slightly more complex model of edge deployment, multiple logical edge computing nodes 

may be instantiated in a single physical edge computing node. They share the same hardware 

platform, but are fully isolated from each other. This deployment model is modular, scalable and 

efficient. It is the primary support mechanism for multi-tenancy. 
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In the most complex model, a logical edge computing node is assembled from the one or more 

physical or logical5 edge computing nodes. One version of this merges the capabilities of multiple 

physical edge computing nodes, which may be peers on same or adjacent layer(s), to handle a 

computation, networking or storage load heavier than a single physical edge computing node can 

manage. In a variation, multiple physical edge computing nodes are grouped into a fault tolerant 

cluster, so that a failure in one of the edge computing nodes will be mitigated by its peers.  

2.4 SUPPORTING TECHNOLOGIES 

Any system implements supporting technologies needed to realize the system. A system that 

supports distributing computing in the edge will use at least these supporting technologies: 

Ubiquitous connectivity is an enabler of distributed computing: the ability of edge elements to 

exchange information. Without connectivity, distribution would be impossible. 

Virtualization is the ability to separate logical functions from the physical device. Virtualization 

supports increasing load dynamically. Some safety- and time-sensitive environments 

(automotive for instance) impose restrictions on virtualization flexibility so that there is no 

oversubscription of resources. Virtualization is enabled by hypervisors, which are supervisory 

agents that create, run, and monitor virtual machines in a host machine. Hypervisors must 

account for the widely distributed infrastructure and the challenging management environment 

of edge computing nodes.  

A software container6 is a structure that allows a single deployable image or data structure to be 

used across different operating platforms. They usually include a user-space application and its 

dependencies as well as networking and storage contexts. The standards-based interoperability 

of containers provides a high degree of confidence that a developer’s applications will run on 

deployment servers (in the data center or the edge), different from where they are developed 

and tested. Container workloads can run at different places, from the data center to the various 

layers of edge and IoT devices, and can change dynamically to optimize performance of the 

overall system. A container runtime is software that manages containers and container images 

on a node. The Open Container Initiative (OCI) has developed a standard specification for 

container runtime and provides a reference implementation called runC. Edge systems can 

manage and orchestrate containerized application services through a container runtime residing 

on each edge computing node. Techniques such as service mesh can handle complex 

communication tasks between microservices. 

Manual operation of these devices and nodes is impossible. We need orchestration, the ability 

to schedule and distribute computing workloads, storage actions and network bandwidth across 

 
5 We contrast “physical” with “logical”. The term “virtual” is also used, but that can be confused with the 

related concept of “virtualization”.  
6 “Software container” is rigorously defined in the IIC vocabulary. We use “container” hereafter. 

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc
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resources automatically, and modify them dynamically as system conditions change. This is 

driven by policy to minimize any requirements for human intervention in the operation of the 

system. Container orchestration technologies like Kubernetes (k8s) provide a set of services to 

help deploy and manage distributed nodes and applications in edge systems. Specifically, they 

help manage distributed applications by scaling them up and down, performing updates and 

rollbacks, and self-healing. Changes to the deployed system are indicated through changes to the 

guiding file declaration, which k8s automatically detects and to which it attends. 

Load balancing is necessary to achieve the desired scalability and performance properties in edge 

systems. Workloads are often much larger than can be run on a single edge computing node, and 

load balancers distribute different parts of the workload to different edge computing nodes. This 

distribution could split complete applications from different users onto different nodes, or divide 

the work into different phases split among nodes at different layers. 

Heterogeneous computing and storage is the ability to use the most efficient hardware 

implementation for the application services workload. Heterogeneous processors include 

traditional CPU cores, graphics processing units, digital signal processors, tensor processing units 

and field programmable gate arrays. Heterogeneous storage could include cache, RAM, flash, 

rotating disk, networked storage and off-line backup. These capabilities are already widely 

deployed in data centers, and are migrating quickly to edge computing nodes. 

  

https://kubernetes.io/
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3 TRUSTED COMPUTING MODULE 

Trustworthiness is the conjunction of five properties: security, privacy, safety, reliability and 

resilience. This section describes how to extend trust from hardware up to the application level. 

  

Figure 3-1: Essential Components of a Trusted Computing Module 

3.1 BOOTING TRUSTED HARDWARE  

The trusted computing module7 comprises two primary components: trusted hardware equipped 

with hardware root-of-trust and trusted firmware, and one or more trusted execution environments8 

that execute code using the trusted hardware. The trusted execution environment includes a 

subcomponent of trusted application services. These are the foundational components of a 

trustworthy system (Figure 3-1). 

 
7 In this context, a module is a set of hardware or software resources that can be composed together to 

build the required system properties. 
8 Also called “secure enclaves”. 
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3.1.1 TRUSTED HARDWARE 

Trusted hardware provides isolation as well as data and execution access-privilege guarantees. 

There is no definitive definition of hardware root-of-trust (hRoT9), but at a minimum, each device 

should have immutable boot code in read-only memory, with access to the cryptographic keys 

and certificates needed to verify the subsequent loads of boot. A unique device ID used to 

authenticate the device and a unique device private key to protect platform secrets are also part 

of the hRoT. The trusted hardware may run an operating system or a hypervisor. Operating 

systems (OSs) create and isolate processes from one another and hypervisors create virtual 

machines that contain OSs and applications isolated from one another. 

3.1.2 TRUSTWORTHINESS OF BOOT PROCESS  

There are various ways to boot a system in a trustworthy fashion. They all employ trusted 

hardware, without which no claims can be made about a system’s trustworthiness. At system 

power-on or reset, the trusted hardware equipped with a hardware root-of-trust transfers 

control to an immutable first load of boot. The hRoT then loads and verifies the authenticity and 

integrity of the next load of boot. Each successive boot image is loaded by the previous image 

and the integrity of the image is checked before control is transferred to it. Upon completion of 

each stage of this process, secure log entries can be created, as proof that the steps necessary to 

create the chain of trust all completed in the correct order. The signed boot log can then be used 

to attest to the security state of the platform using a third-party verifier, called remote 

attestation. This gives the edge system confidence that an edge computing node is trustworthy. 

The UEFI Secure Boot10 is commonly used in the server community. On the other hand, different 

proprietary mechanisms are employed by embedded system vendors to implement secure boot. 

These proprietary approaches inevitably lead to proprietary mechanisms for system updates as 

well. To avoid unnecessary complication, Linaro and its members is introducing the UEFI interface 

to U-Boot11 so that embedded operating systems can leverage UEFI Secure Boot, UEFI Measured 

Boot and secure Update Capsules with U-Boot. 

Secure firmware and software update: If a device is to remain secure, unauthorized updates must 

be prevented. Updates should be verified by a secure service before being stored in a secure 

location. As code is loaded and verified at runtime, the integrity and authenticity are guaranteed. 

Physical device access protections: If unauthorized persons can physically access the device and 

the possible threats outweigh the cost of preventing a breach, then tamper-resistant hardware 

with tamper-detection mechanisms are necessary. The device behavior on detection of a 

 
9 Initial RoT (iRoT) is an equivalent term. 
10 Unified Extensible Firmware Interface (UEFI) Specification v.2.8, §23. 
11 UEFI is a specification that is implemented by commercial products (including American Megatrends, 

Phoenix and Insyde) or open source software (EDK2 and now U-Boot).  

https://www.linaro.org/engineering/edge-and-fog-computing/
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tampering event should be a programmable policy ranging from bricking the device to logging 

the event and continuing. 

3.1.3  TRUSTED EXECUTION ENVIRONMENT 

A trusted execution environment (TEE) provides an isolated environment for the initial boot. A 

TEE isolates trusted code and data from untrusted code and data that might reside in 

applications. TEEs may provide trusted services during the life of the system or the life of the 

application address space. Some examples of trusted services are secure key generation, storage 

and retrieval, and secure, persistent storage.  

TEEs may also host trusted applications; examples of trusted applications in the edge include 

confidentiality and integrity protection of sensor data. And TEEs are also at the heart of enhanced 

trusted computing models, specifically: 

Confidential computing: Cloud technologies allow inter-tenant isolation while confidential 

computing technologies isolate tenants from infrastructure administrators. 

Multi-ownership: A paradigm of confidential computing that preserves information privacy and 

sovereignty and enforces usage governance to satisfy regulations and business policies. 

Hardware features, and maybe microcode, provide a secure isolated and protected environment 

so the TEE is isolated from the application execution environments because secrets cannot cross 

the boundary between trusted and untrusted execution environments. However, the application 

execution environments may request a service to execute code in the TEE. 

3.2 APPLICATION EXECUTION ENVIRONMENTS 

Application execution environments (AEEs) provide the higher-level infrastructure riding upon 

the TEE to execute the application services. They consist of a software backplane that enables 

the composability of modular software, and application support modules that provide common 

platform support and application programming interfaces (APIs) to the application services.  

The bare-metal OS kernel and hypervisor kernel are implicitly trusted; they control privileged 

hardware and software contexts in the AEE. Kernels can still withhold service in the AEE by not 

dispatching some work and they can still create and destroy processes and VMs. They do not 

have to be trusted to the same degree because they cannot access the code, data or the 

execution context of the TEE. If a service is withheld by the AEE, confidentiality and integrity 

guarantees are still in place, but availability guarantees are not. 

The untrusted execution environment provides an execution environment in which hypervisor 

services, OS services, containers and application services run. It runs untrusted code, and TEEs 

may be contained in a non-secure application service address space using a protected memory 

area within the address space that is not accessible to any other address spaces in the AEE.  
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A software backplane is analogous to a hardware backplane that interconnects hardware 

modules, but applied to modular software components—it provides an elastic computation 

infrastructure. Distributed applications communicate with each other via the connectivity 

elements of the software backplane. The software backplane includes the OS, hardware drivers, 

network connectivity functions and other software infrastructure elements to support the 

application services.  

Application support services, like data communication protocols, data stores, web servers, 

runtime engines often run as containers or micro-services on top of the software backplane and 

provide shared services to the application services running above. These application support 

functions are often implemented as common platforms, usable by all the application services 

that may be running concurrently on a multi-tenant edge computing node. These platforms (and 

the layers below them on Figure 3-1) are often horizontal, meaning they are equally applicable 

to all vertical markets or IoT application domains. 

Application services implement the user’s software and interact with the rest of the edge 

framework. It includes various application-specific protocols, algorithms and APIs that enable 

workloads to be executed on edge computing nodes and edge systems. The code for application 

services is often written by experts in the specific domain areas that are supported by an edge 

computing node (for example, transportation, medical, factory automation or smart city 

applications would be created by experts in these respective areas). 

3.3 INTERFACES 

A set of standard APIs have been established to allow application services to receive secure 

services through the software infrastructure from the trusted services running in the trusted 

execution environment. Standard APIs include the Cryptographic Token Interface (PKSC#11), the 

Trusted Platform Module (TPM) Mobile Command Response Buffer (CRB) Interface and the 

GlobalPlatform TEE Client API.  

The Cryptographic Token Interface (a.k.a. Cryptoki or PKCS#11) is a Public-Key Cryptography 

Standard (PKCS) that defines a platform-independent API to interact with cryptographic tokens 

such as hardware security modules and smart cards embedded in the trusted hardware platform. 

The API defines commonly used cryptographic objects including RSA keys, X.509 Certificates, 

AES/DES keys as well as the functions to create, modify, use and delete those objects. Most 

commercial certificate authority software uses PKCS #11 to access the certification authority 

signing key or to enroll user certificates. 

The TPM 2.0 Mobile Command Response Buffer Interface is a kernel interface to a TPM. For the 

software infrastructure to communicate with a TPM embedded in the trusted hardware, it puts 

a command in the TPM command buffer and sets a flag. In response, the TPM executes the 

command in the buffer, puts its response in the response buffer and clears the flag. 

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-command-response-buffer-interface-specification
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The GlobalPlatform TEE System Architecture defines two APIs. The TEE Internal API specifies a 

common interface for trusted application services in the TEE to access the trusted hardware. The 

TEE-Client API, on the other hand, is an external interface that allows applications in an AEE to 

call trusted application services to perform secure operations on their behalf. These secure 

function calls are converted by the TEE kernel into calls to the corresponding trusted application 

services. An implementation of the TEE Client API must contain a client API library and an AEE 

communication agent shared among all client application services. Currently, the Open Portable 

Trusted Execution Environment (OPTEE) under Linaro and the Trusty TEE under Android are the 

two popular open-source implementation of GlobalPlatform TEE specification. Trusty is more 

light-weight than OPTEE.  

https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://www.op-tee.org/
https://www.op-tee.org/
https://source.android.com/security/trusty
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4 END-TO-END SECURITY MODULE 

Following International Telecommunication Union - Telecommunication Standardization Sector 

(ITU-T) X.805 Recommendation,12 the End-to-End Security Module in this architecture comprises 

three components: communication security services, information security services and security 

incident monitoring & response. Figure 4-1 illustrates these components and shows the 

interfaces among them. 

 

Figure 4-1: Functional Components of the End-to-End Security Module 

4.1 END-TO-END SECURITY SERVICES 

End-to-end security services, for communication and information security, run in an end-to-end 

security module in each node. In a system supporting hardware virtualization and application 

service containerization, those services should run between the communication ports of the 

containerized application services regardless of whether these services are located within the 

same or different edge computing nodes. Cryptographic functions that implement end-to-end 

security must be performed by the trusted application services running in the trusted execution 

environments instantiated in the trusted computing modules of the edge computing nodes. 

These services must be requested through the external service interface provided by trusted 

 
12 Zeltsan, Zachary. "ITU-T Recommendation X. 805 and its Application to NGN." _28 4 (2010). 
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application services in the trusted computing module. Information flowing between the trusted 

execution environment and the application execution environment must also be protected by 

information isolation among different application services and between multiple tenants.  

Information security services: Information exchanges among application services should also be 

protected, especially access control based on identities, attributes, roles or (access control) 

capabilities of the communicating parties. They should encompass authentication, authorization 

and accounting services. The scope of protection should include: 

• data-in-use: data being processed or residing in memory during computation, 

• data-at-rest: data maintained in local or remote mass storage and 

• data-in-motion: data moved through communication networks. 

Communication security services: Information exchanges among application services must be 

protected to ensure confidentiality and integrity of the exchanged information using strong 

cryptographic functions, and the authenticity of the communicating parties through verification 

of their identities. These services should include the following, as recommended in ITU-X.800:13 

• confidentiality 

• integrity 

• authentication 

• (optionally) nonrepudiation  

They should protect the communication channels across the edge computing system. The IICF 

defines the required communication security functions to:  

• authenticate endpoints before allowing them to participate in a data exchange,  

• grant read and write permissions to endpoints participating in a data exchange,  

• ensure data integrity and trustworthiness of the data delivery, so that received data is not 

tampered with while stored or in transit and  

• encrypt sensitive data flows (selectively, because some high-volume data flows may not 

be sensitive enough to warrant the overhead of encrypting and decrypting the data).  

The decision to encrypt should be based on a risk-impact assessment. The access-control-model 

should be sufficiently fine-grained to limit the permissions of each endpoint narrowly to the 

operations and services needed for performing their intended functions. This enables the 

principle of least privilege that limits the consequence of security breaches and insider attacks. 

The security incident monitoring and response service continuously monitors the edge computing 

nodes to detect functional and operational anomalies and initiate proper responses. Unlike 

similar services for conventional computer systems, security incident monitoring and response 

 
13 Rec, ITU-T. "X. 800 Security Architecture for Open Systems Interconnection for CCITT Applications." ITU-

T (CCITT) Recommendation (1991). 

https://www.iiconsortium.org/IICF.htm
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operation in an edge computing system rarely requires human intervention. They rely mostly on 

automatic anomaly detection, machine-to-machine communication and autonomous responses.  

4.2 SYSTEM SECURITY MANAGEMENT 

Communication and information security must be managed at the system level and enforced 

over individual services running on the edge computing nodes. Successful security management 

over such a distributed, multi-layer infrastructure must have the following support mechanisms: 

Identity management: A federated identity management system is needed to track and manage 

nodes and services. It must be able to create and manage unique identifiers and verifiable 

security credentials for every entity in the system, including IoT devices, edge computing nodes 

and application services running on each node. 

Credential and relation management: The credentials and capabilities of every entity above must 

be issued by trusted authorities and verifiable by all the interacting entities. Transient and 

permanent relations among them should be auditable and traceable with high availability. Two 

technologies are commonly used to support these functions: 

• Public key infrastructures (PKI): Public key certificates issued by trusted certificate 

authorities remain the most popular form of security credentials and public key signature 

is still the standard mechanism for offering non-repudiation protection.  

• Distributed ledgers (DL) serve as a trusted public repository and the smart contracts they 

maintain can provide a reliable and scalable mechanism to track relationships established 

among a vast number of entities. 

Policy management specifies, decides and enforces communication and information security 

actions based on verifiable security policies from multiple stakeholders. The eXtensible Access 

Control Markup Language (XACML) 3.0 architecture is a commonly used architecture and it 

comprises the following functional components: 

• Policy administration point (PAP): an element that manages the security policies; 

• Policy retrieval point (PRP): an element in which the XACML policies are stored;  

• Policy information point (PIP): An element that acts as a source of attribute values; 

• Policy decision point (PDP): An element that evaluates the security service requests 

against the applicable security policies before issuing decisions; 

• Policy enforcement point (PEP): An element that intercepts a user's security service 

request, receives a decision from the policy decision point and acts on it. 

The XACML policy management operation follows the procedures outlined below: 

• a user sends a request, which is intercepted by the policy enforcement point; 

• the policy enforcement point converts the request into a XACML authorization request; 

• the policy enforcement point forwards the authorization request to the policy decision 

point; 

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
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• the policy decision point evaluates the authorization request against the applicable 

policies maintained by the policy retrieval point and then decides whether to permit or 

deny the request; 

• the policy decision point then returns the decision to the policy enforcement point, which 

then carries out the decision. 

XACML began as a mechanism to manage access control policies and expanded to manage and 

enforce most communication and information security policies. 

4.3 INTERFACES 

The interfaces between the end-to-end security service module and other modules are: 

Communication security interfaces are protocols that provide communication-security services 

to information exchanges among all the entities in an edge computing system. These exchanges 

can go through three kinds of secure communication pathways: 

• node-to-data-center (northbound) secure communication pathways, 

• node-to-node (east/westbound) secure communication pathways and 

• node-to-device (southbound) secure communication pathways. 

Specifically, the southbound pathways support communications between devices and edge 

nodes using APIs based on industrial protocols, such as Modbus, OPC-UA, MQTT, DDS and REST. 

Section 10.1.3 of the IEEE standard for adoption of OpenFog reference architecture for fog 

computing has a detailed specification of these secure communication pathways and the 

standard protocols being used. Information security interfaces: Information security can be 

implemented by enforcing both mandatory and discretionary access control policies over 

information exchanges across a multi-layer edge system. As an example, Trusted Network 

Connect (TCN) developed by the Trusted Computing Group serves as a network information 

security standard for enforcing end-to-end access control in multi-vendor environments. 

StrongSwan offered an open-source TCN implementation based on its IP Security (IPsec) protocol 

stack. 

Security service interfaces connect user’s application services with the software infrastructure 

and the end-to-end security modules in an edge computing node. It provides a common set of 

APIs for the application services to access cryptographic and security services.  

The IETF Generic Security Service Application Program Interfaces (GSS-API), (version 2, update 1 

RFC 2743, RFC 2744) were the first standard sets of vendor-independent security APIs. They used 

the exchange of opaque messages, (“tokens”), to hide the implementation detail of security 

services from higher-level application services. Kitten is the successor of GSS-API and the 

Kerberos authentication system. It integrated the Simple Authentication and Security Layer 

architecture into its specification.  

https://standards.ieee.org/standard/1934-2018.html
https://standards.ieee.org/standard/1934-2018.html
https://trustedcomputinggroup.org/work-groups/trusted-network-communications/
https://trustedcomputinggroup.org/work-groups/trusted-network-communications/
https://wiki.strongswan.org/projects/strongswan/wiki/TrustedNetworkConnect
https://tools.ietf.org/html/rfc2743
https://www.ietf.org/proceedings/62/kitten.html
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Security management interfaces connect the end-to-end security service module of an edge 

computing node to one or more system security management module(s) in the edge system that 

provides identity, credential and security policy management. Currently, there exist no common 

standard(s) for the security management interfaces although the XACML 3.0 architecture has 

been widely accepted for policy management. The pod security standards currently being 

developed in the Kubernetes community to specify the policies for running containers may 

become a standard way for managing container security on a Kubernetes platform. 

  

https://kubernetes.io/docs/concepts/security/pod-security-standards/
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5 SYSTEM MANAGEMENT AND PROVISIONING MODULES 

An edge computing system may comprise a great number of widely dispersed, interconnected 

nodes each running multiple application services that interact to deliver system functionality. 

Each node needs to be discovered, commissioned, operated and decommissioned over the 

lifetime of the system. In addition, the application services running on these nodes need to be 

deployed, configured, monitored, updated, scaled, and deleted.  

Edge computing system management in this context is a large and complex set of capabilities. 

Core to the concept of edge computing is the use of elastic computation across nodes, layered 

below the data center. To respond to varying workloads, an edge computing system can add or 

remove resources quickly to execute on more or fewer edge computing nodes, or repartition 

workloads to optimize efficiency. Edge computing system management needs to orchestrate 

elastic computing resources to achieve this. Elastic computing resources such as VMs and 

containers can be clustered as a service. A service distributes workloads requested by clients 

across clustered computing resources. Then, elastic computing resources for a service can be 

automatically scaled depending on workloads. Managing and orchestrating this elastic 

infrastructure is critical to the functionality of a distributed edge system. 

Management capabilities are split into levels. At the node level, management is responsible for 

the configuration and the update and monitoring of all the low-level hardware and software 

resources in an edge computing node. The application and service management functions are at 

a higher level, responsible for deployment, configuration, update and monitoring of application 

services. 

The system provisioning and management functions work at the system level as a centralized 

controlling and monitoring capability. In practice, the capabilities below the dotted line on Figure 

5-1 run primarily on individual edge computing nodes, while those above are often run in or near 

a data center. 

An edge computing system contains myriad resources that need to be managed. This is described 

by a resource model that can be constructed automatically through discovery within the system 

management. 

Specific functions of edge system management are to: 

• collect and maintain the resource model, 

• manage connected physical resources (e.g., sensors and actuators), computing resources 

(e.g., VMs and containers), storage and networking and possibly data center resources, 

• build and maintain hierarchy and containment relationships of all resources (e.g., the 

relationships between a VM and a container running on the VM) and 

• maintain a topology of the connectivity including physical and logical networks and all 

associated interfaces. 
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5.1 COMPONENTS 

System management components for distributed computing in the edge comprise a centralized 

management module and management modules residing in edge computing nodes.  

System provisioning and management is a set of system services at the system level. It interacts 

with the modules for node and application management running in an edge computing node to 

support centralized system management and orchestration of application services running in 

edge computing nodes. This is typically implemented in data centers and provides an API for user 

interface tools.  

The application & service management module manages the lifecycle of an application service in 

a virtual machine or a container. After registering with the system provisioning and management 

module, an edge computing node can receive control messages from the management system 

for deploying, updating and deleting application services. It also reports status of running 

application services back to the management system.  

The node management module handles configuring, monitoring, and updating the system 

hardware and software resources in an edge computing node. This module needs to be 

registered in the system provisioning and management module before it can be used. After 

registration, the management system can operate the node management functions remotely.  

 

Figure 5-1: Functional Components of Edge System Management and Provisioning Modules 



IIoT Distributed Computing in the Edge 

 - 26 - 

5.2 INTERFACES 

The blue arrows on Figure 5-1 represent interfaces associated with system management. 

5.2.1 NODE MANAGEMENT MODULE INTERFACE 

The interface between the node management module and the system provisioning and 

management configures, monitors and updates system hardware and software resources in an 

edge computing node from the centralized management system. Resources managed by this 

interface include:  

• system information (e.g., instruction set, operating system), 

• device identification, 

• status of a node, 

• network addresses for edge computing nodes and 

• resource capacity of a node (e.g., CPU and memory). 

5.2.2 APPLICATION SERVICE MODULE INTERFACE 

The interface between the application service management module and the system provisioning 

and management is used for remote interactions between the management system and edge 

computing nodes to provide orchestration functions for application services. They include 

automatic deployment and update, load balancing, scaling and self-healing. 

The deployment and update function ensures that requested application services are deployed 

and running in edge computing nodes. These application services can perform tasks varying from 

simple data collection to real-time analytics or machine-learning inference. A load balancing 

capability distribute tasks from clients over a set of containers or virtual machines. A logical 

service can then be dynamically scaled up and down by adding or removing containers or virtual 

machines based on overall loads.  

The self-healing capability continuously monitors the health of nodes and application services. 

For example, if a user requests three replicas of containerized or virtualized applications and an 

edge computing node running one of the applications fails, the self-healing capability will 

redeploy a replica of the application into a healthy node to attain the desired state.  

5.2.3 INTERFACES BETWEEN APPLICATION SERVICE MODULE AND APPLICATION EXECUTION ENVIRONMENTS 

An edge computing node runs a container runtime or a hypervisor that handles the lifecycle 

operation of containers or virtual machines. The application service management module uses 

this interface to request a lifecycle operation to a container runtime or a hypervisor. The 

operations supported by this interface include pulling images, creating, deleting, starting and 

stopping containers or virtual machines. For example, Kubernetes has a plugin interface for 

container runtimes named the container runtime interface that defines the common operations 

for containers and it allows the system to use a variety of container runtimes.  
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5.2.4 INTERFACES BETWEEN NODE MANAGEMENT AND TRUSTED COMPUTING MODULES 

Two sets of interfaces exist between node management and trusted computing modules: 

The Trusted Execution Environment (TEE) Management Interface is dominated by the 

GlobalPlatform TEE Management Framework (TMF). The TMF defines standard methods to 

manage the lifecycle of a TEE and the trusted application services running in the TEE via protocols 

and interfaces accessed through either the GlobalPlatform TEE Client API or extensions to the 

TEE Internal Core API. The framework is divided into three layers: 

• Administration operations for managing the trusted application services, the security 

domains and their conditions of use. 

• Security Models for  

o specifying the responsibilities and relations among the TEE implementer, the TEE 

issuer and the trusted application providers,  

o specifying the security mechanisms to authenticate various entities, secure 

communications and authorize operations and 

o specifying key management and data provisioning schemes.  

• Open Trust Protocol (OTrP) for specifying the command set and the JSON encoding for 

performing the administration operations. 

Trusted Platform Modules (TPM) Management Interface for managing the operation of 

cryptographic unit embedded in a trusted hardware platform. The following two interfaces are 

of particular importance: 

• TPM Key Management Standard, which specifies TPM key hierarchy, and key migration 

models, structures and flows and 

• Remote Attestation Procedures, which is being developed in the IETF Remote Attestation 

Procedures (rats) working group. 

5.3 CONTRACT OF INTEROPERABILITY 

To on-board end devices, gateways and servers securely into a management system requires a 

handshake. Zero-configuration, auto-discovery and self-describing interfaces provide this 

handshake automatically and minimize the need for manual labor, which is especially costly in 

the case of large networks of heterogeneous IIoT devices. These interfaces define a protocol for 

the handshake between the device, as shipped by the vendor, and the management system. 

Devices, upon power up or reset should authenticate, auto-configure, become part of the 

network, be auto-discovered and securely on-boarded by the management system with little to 

no manual intervention. They should declare their properties, actions and normal versus off-

normal vital signs (that is, be “self-describing”). This guides the management system towards the 

proper monitoring of the device without prior knowledge of its details being hard coded or 

manually configured.  

https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_MgmtFramework_v1.0_PublicRelease.pdf
http://globalplatform.org/wp-content/uploads/2018/11/GPD_TMF_OTrP_Profile_v0.0.0.21_PublicReview.pdf
https://trustedcomputinggroup.org/resource/overview-of-the-tpm-key-management-standard/
https://datatracker.ietf.org/wg/rats/
https://datatracker.ietf.org/wg/rats/


IIoT Distributed Computing in the Edge 

 - 28 - 

Likewise, IIoT software components should provide a handshake so they can be monitored and 

managed. EdgeX Foundry microservices are equipped with management APIs for this purpose. 

Self-describing managed resources should be applied uniformly across both hardware and 

software components, across all three tiers of the system. The provider of the component 

develops and packages resource objects with the product as it is shipped. The self-description is 

a schema based on a service or interface description language, or the equivalent. Web Services 

Description Language (WSDL) is one example; OpenAPI Specification, based on the Swagger 

specification using a REST APIs approach, is another. The description indicates parameters that 

can be configured, and the vital signs to monitor including what constitutes normal versus off-

normal behavior. Standards groups will define APIs for the different types of managed objects to 

further streamline this handshake and contract of interoperability for IIoT infrastructure 

management. 

5.4 EDGE COMPUTING NODE LIFECYCLE 

Each edge computing node in this architecture has its own management lifecycle, which is 

controlled by its node management module in conjunction with the system provisioning and 

management module of the edge system. Together, they ensure that each edge computing node 

goes through its lifecycle stages successfully, as outlined in Figure 5-2, with minimal human 

intervention. 

 

Figure 5-2: Management Lifecycle of an Edge Computing Node14 

Commission is the earliest phase of the lifecycle. It includes installation, identification, 

certification and calibration. The managed entity must: 

• lay the groundwork for trustworthiness, with support for security, privacy, safety, 

reliability and resilience that can be attested to and trusted in all phases of the lifecycle, 

• be agile in their ability to collect data and monitor systems in the face of changing 

requirements and operational conditions and 

• open, to allow control and provide visibility into its resources. 

Provision includes discovery, advertisement of features and capabilities, trust, updating software 

and data structures, and deployment of features. This starts with secure on-boarding of an edge 

 
14 Extracted from Fog Computing Reference Architecture, Figure 17 

https://www.edgexfoundry.org/
https://www.w3.org/TR/wsdl20
https://www.w3.org/TR/wsdl20
https://www.openapis.org/
https://swagger.io/
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device and making it accessible under its user interface. This may include the detection of sensors 

and connections to servers.  

If deployment-specific credentials must be configured during device manufacturing then each 

such configuration is, in effect, a unique manufacturing SKU. These SKUs must be managed as 

unique products through IoT supply chains from manufacturing, distribution, to systems 

integration and installation. This uniqueness helps prevent the successful provisioning of 

counterfeit or spoofed devices. 

Operate covers the period when an edge computing node is in normal operation. After 

connectivity from sensor-to-server through an edge device, the application management module 

brings up the application services via a container runtime or a hypervisor. It monitors the devices 

involved and monitors the virtualization stack and the application services components on top.  

After the system is up and running and the application is acquiring and processing data, system 

management evolves to control and monitor the system to ensure its steady state functioning. 

This includes: 

• querying or receiving the state of the different aspects of the system and displaying it, 

• data ingestion of time-series metrics for vital sign monitoring and the detection of 

abnormal or overload conditions,  

• alerts, to include predicting, detecting and annunciating failures such as overloads and 

• actuation to resolve or avoid failure by lowering the rate of time-series acquisition in 

response to an overload alert or adjusting other operational parameters to maintain the 

required system performance under load. 

System management performs updates when a new version is available. When an update 

operation is requested, an edge computing node initially pulls updated container or VM images 

from a remote repository and then replaces old containers or VMs with new ones. Similar 

mechanisms can update firmware, BIOS and FPGA configuration files. Rolling and rollback 

updates are desirable capabilities for updating application services on edge computing nodes. 

Rolling updates allow application services to be updated with zero downtime by incrementally 

updating application service instances with new ones. If the state of an updated application 

service is not stable, it can be rolled back to a previous version.  

Recover includes the period when an edge computing node is operating out of expected norms. 

It should attempt to isolate hardware and software components from failed nodes and self-heal 

autonomously. Other edge computing nodes, or data center resources may also assist with the 

recovery action, by performing various resets, restarts and reloads, moving computational loads 

from failed or overloaded nodes to redundant nodes or redirecting critical data streams away 

from failed storage devices or communications links. 

Decommission covers a time when the node cleanses all personally identifiable and proprietary 

data it may have stored from the hardware and prepares it for reuse another deployment. In 
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non-stop systems where short duration service outages can’t be tolerated, decommissioning one 

node involves the seamless migration of its workloads and data to a replacement node. It includes 

ways to wipe out all non-volatile storage so that future application services cannot access the 

previous tenant’s data. De-commissioning physical nodes may involve recycling and site 

restoration. 

The system management and provisioning functions are essential to the operation of distributed 

computing in the edge. With tens of millions of edge computing nodes deployed in the coming 

years, without highly capable management, the deployment speed, labor investment, cost, 

efficiency and customer satisfaction of edge computing will be unacceptable.  
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6 CONCLUSIONS 

This distributed computing framework provides insights into the capabilities and architectures of 

distributed computing, edge computing nodes and edge computing systems. Through the careful 

application of the concepts and techniques described here, it is possible to meet the critical 

performance, trustworthiness and efficiency requirements of many classes of IoT applications 

serving many vertical markets. 

The framework pays special attention to two of the most essential properties of distributed 

computing and edge systems: end-to-end security and system management. The security 

architecture shows how to start with a trusted computing module and build edge computing 

node security up to a complete trustworthy system. The system management capabilities 

described illustrate how to manage edge computing nodes and application services, supporting 

capabilities like orchestration, resource management and the operation of distributed computing 

workloads throughout their lifecycle. 

There is much architectural work still needed to address all the challenges in distributed 

computing in the edge. Beyond the security focus of this document, edge has implications for the 

four other dimensions of trustworthiness defined by IIC (privacy, safety, reliability and resilience). 

Performance and how to measure and optimize it is an ongoing challenge. Network complexity, 

especially related to management is a strong contributor to total lifecycle cost of ownership of 

distributed computing in the edge solutions, and much work is required there. 

Distributed computing, and the nodes and edge systems that are its key components are 

essential to the success of many critical IoT systems, and digital transformation plans. This 

framework is a useful tool in planning its architecture, implementation, deployment, and 

widespread adoption. 
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In Memoriam: Brett Murphy 

We lost a beloved colleague recently. I wanted to take this time 

and space to express our gratitude for having the great fortune 

to have known Brett Murphy in his too-short life and share how 

important he has been to us. 

Brett Murphy has been a member of the Industrial Internet 

Consortium since Real-Time Innovations (RTI) joined within days 

of our launch in 2014. But not only was Brett a member, he was 

a trusted colleague, friend, key contributor, voice of reason and 

shining light to us all. 

Brett epitomized the true meaning of the word collaboration. In the many opportunities we had 

to work with him and to see him in action at our meetings and events, he was a true team player. 

He was always surrounded by members who were learning from each other and at the same time 

developing new ideas that would raise everyone’s game. He was a spokesperson for those 

informal groups and a leader of our formal groups. He brought his scientific and practical mind 

to the strategic discussions that have shaped this consortium since its inception. We would not 

have achieved as much as we have thus far, without Brett. 

Brett was a Stanford alum, an engineer and a marketer. A technical expert and a visionary. He 

was passionate and kind. He possessed a calming presence that was complemented by a quick 

sense of humor and a mischievous streak that merged in the most wonderful, likable way. He 

could provide the spark for a brainstorm or defuse the tension in the room. It’s why we found 

him a joy to work with and were honored to call him our friend. 

In consortia culture, where contributors offer their precious free time and intellect on top of their 

day jobs, Brett was always willing to help. He applied his rock-solid reliability to his own brilliant 

ideas, as well as when called upon to lead a new initiative, so others could learn and follow. 

We know the dedication he shared with us was eclipsed by his dedication to his family. We share 

Brett’s family’s and the RTI family’s grief and thank them for sharing Brett with us for these past 

6 years. His contributions, and more importantly, his presence in our lives will never be forgotten. 

Brett was a key contributor to this report. It is fitting that we memorialize him here. 

Kathy Walsh, VP of Marketing, IIC 


	1  Why Distribute Computing Towards the Edge?
	1.1 Business Benefits
	1.2 Desired Properties

	2 A Framework
	2.1 Edge Systems
	2.2 Communication Pathways
	2.3 Deployment Models
	2.4 Supporting Technologies

	3 Trusted Computing Module
	3.1 Booting Trusted Hardware
	3.1.1 Trusted Hardware
	3.1.2 Trustworthiness of Boot Process
	3.1.3  Trusted Execution Environment

	3.2 Application Execution Environments
	3.3 Interfaces

	4 End-to-End Security Module
	4.1 End-to-End Security Services
	4.2 System Security Management
	4.3 Interfaces

	5 System Management and Provisioning Modules
	5.1 Components
	5.2 Interfaces
	5.2.1 Node Management Module Interface
	5.2.2 Application Service Module Interface
	5.2.3 Interfaces between Application Service Module and Application Execution Environments
	5.2.4 Interfaces between Node Management and Trusted Computing Modules

	5.3 Contract of Interoperability
	5.4 Edge Computing Node Lifecycle

	6 Conclusions
	Authors and Legal Notice
	In Memoriam: Brett Murphy


