

The Industrial Internet of Things

Distributed Computing in the Edge
Version 1.1

2020-10-18

John Zao (NCTU), Chuck Byers (IIC), Brett Murphy (RTI), Salim AbiEzzi (VMware) Don Banks

(Arm), Kyoungho An (RTI), Frank Michaud (Cisco Systems), Katalin Bartfai-Walcott (Intel)

IIoT Distributed Computing in the Edge Contents

 - ii -

CONTENTS

1 Why Distribute Computing Towards the Edge? .. 2
1.1 Business Benefits ... 2
1.2 Desired Properties ... 4

2 A Framework .. 6
2.1 Edge Systems .. 8
2.2 Communication Pathways ... 10
2.3 Deployment Models .. 11
2.4 Supporting Technologies .. 12

3 Trusted Computing Module ... 14
3.1 Booting Trusted Hardware ... 14

3.1.1 Trusted Hardware .. 15
3.1.2 Trustworthiness of Boot Process ... 15
3.1.3 Trusted Execution Environment .. 16

3.2 Application Execution Environments .. 16
3.3 Interfaces .. 17

4 End-to-End Security Module .. 19
4.1 End-to-End Security Services .. 19
4.2 System Security Management .. 21
4.3 Interfaces .. 22

5 System Management and Provisioning Modules .. 24

5.1 Components .. 25
5.2 Interfaces .. 26

5.2.1 Node Management Module Interface... 26
5.2.2 Application Service Module Interface ... 26
5.2.3 Interfaces between Application Service Module and Application Execution Environments

 ... 26
5.2.4 Interfaces between Node Management and Trusted Computing Modules 27

5.3 Contract of Interoperability ... 27
5.4 Edge Computing Node Lifecycle ... 28

6 Conclusions ... 31

Authors and Legal Notice ... 32
In Memoriam: Brett Murphy .. 33

IIoT Distributed Computing in the Edge Contents

 - iii -

Figures

Figure 2-1: Illustration of Multi-layer Edge System ... 7

Figure 2-2: Functional Composition of an Edge Computing Node .. 9

Figure 3-1: Essential Components of a Trusted Computing Module .. 14

Figure 4-1: Functional Components of the End-to-End Security Module ... 19

Figure 5-1: Functional Components of Edge System Management and Provisioning Modules 25

Figure 5-2: Management Lifecycle of an Edge Computing Node .. 28

IIoT Distributed Computing in the Edge

 - 1 -

Distributed computing moves the capabilities of cloud computing in data centers closer to

intelligent IoT devices, towards the edge.1 This can increase performance and efficiency, but it is

essential in industrial settings for optimizing time-critical industrial processes because critical

control processes that do not respond in time can become dangerously unstable.

This document describes a framework for distributed computing in the edge that brings

computation, networking and storage closer to data producers and consumers for the Internet

of Things (IoT). It is intended for IoT system architects and implementers who are working with

edge systems comprising IoT devices, edge computing nodes, networking equipment and data

center servers. It:

• provides a structural and functional framework for distributing computing in the edge,

• defines the key architectural concepts employed for distributed computing in the edge,

• specifies the essential capabilities of this edge system’s elements,

• pays special attention to essential security and management functions and

• describes the essential interfaces among these elements.

System architects can use the framework2 as an architectural template that helps derive a

concrete distributed computing architecture. Others, such as operations technologists,

information technologists, network and business managers may also find it useful to understand

the essential elements of distributed computing in the edge.

1 The IIC Vocabulary defines edge to be the “boundary between the pertinent digital and physical entities,

delineated by IoT devices” and edge computing as “distributed computing that is performed near the

edge, where nearness is determined by the system requirements”. That is, “edge” is used in the former

as a boundary and in the latter as a region. This report uses “at the edge” to mean at the boundary

(though that boundary is fuzzy), and “in the edge” to mean in the region. Similarly, “to the edge”

connotes distribution away from data centers.
2This document was derived from the “OpenFog Technical Framework” compiled by the members of the

OpenFog Consortium, which joined forces with IIC in January 2019. That document described functional

characteristics and interfaces of fog elements, fog nodes and fog systems existing within the Data Center-

to-Things Continuum. IIC pivoted this framework to distributed computing in the edge.

IIoT Distributed Computing in the Edge

 - 2 -

1 WHY DISTRIBUTE COMPUTING TOWARDS THE EDGE?

Edge computing moves the capabilities of cloud computing typically associated with data centers

into the edge, where they are closer to IoT devices. With edge computing, data, networking,

storage and computing are distributed throughout layers of edge computing nodes from IoT

devices to the data center, distributing the economies of scale of cloud capabilities throughout

the system. The migration of cloud capabilities into the edge allows data, storage and

computation to gravitate to where it can be handled most efficiently, whether in a data center

or the edge.

1.1 BUSINESS BENEFITS

Cloud computing capabilities in data centers offers flexibility and scale to enterprises. We can

extend those benefits towards “things” in the real world, towards the edge. The flexibility to

decide where to perform computation on data improves performance and reduces costs.

Computing in data centers induces bandwidth costs as data is transmitted, while sensors are

generally limited in terms of what computations they can do. Computing in-between can collect

data from multiple sources, fuse and abstract as needed, and compute right there. Computation

can take place near to the repositories of the data, rather than consuming bandwidth shifting the

data to a data center. The propensity for computation to take place “near” the data is called data

gravity, and is a key motivator for distributing computing.

The flexibility to decide where to store data improves performance and reduces costs. Moving

data takes time and costs money. It may also expose to security and privacy risks. Data

segmentation based on compliance boundaries imposed by regulation in different jurisdictions

supports disciplined security. If data is held on premises with no connection to the internet, it

cannot be compromised by the proverbial hacker in his parents’ basement.

Performance of IoT applications is often an overarching catalyst for moving previously data-

center-based workloads to the edge. Executing close to where the data is generated in the

physical world, rather than passing data up to a data center and back down, reduces the time lag

(latency) and indeterminate time (jitter) between receiving data and acting on it. Faster is usually

better, but it is essential for optimizing time-critical industrial processes. Critical control

processes that experience too much latency or jitter can become dangerously unstable.

When several logical functions execute on single or multiple physical devices, the owners of edge

systems can serve multiple customers on a shared infrastructure, increasing deployment

efficiency. This is called multi-tenancy.

Multi-tenancy enables scalability, so that devices in different rooms and floors of a smart

building, for example, can be aggregated into a smart neighborhoods and districts of a city. Scale-

up is the addition of computational, memory, storage and networking resources. Scale-out is

IIoT Distributed Computing in the Edge

 - 3 -

when more same-function computing resources are deployed in the data center or the edge.

(And we may also scale down and scale in).

To respond to varying application mixes and workloads, we need elasticity to be able to add or

remove resources quickly by reconfiguring the system to execute on more or fewer edge

computing nodes. This elasticity supports, for example, first responder teams when computation

and connectivity needs fluctuate in an emergency. This agility to accommodate rapid change is

important in many edge systems.

Redundancy, and the associated fault-recovery software, creates a fault-tolerant system that

enables critical services to continue in mission- and life-critical applications, even as nodes or

links fail. A single degraded node or link can be routed around and failures avoided—one of the

original motivators for the internet itself.

Distributed computing in the edge is synonymous with edge computing. It is fundamental to

distributed applications such as connected cars, enabling a platoon of cars traveling at high speed

to communicate and then travel closely together, avoiding accidents and saving road space.

Distributed computing in the edge also enables new applications and features, which can

increase efficiency, revenue and value for the customer. For example, smart grids are already

feeding distributed energy resources into the power network, reducing energy costs and even

providing discounts to customers.

There are some specific issues that must be considered when distributing computing to the edge:

Truck-roll: Adding or replacing equipment outside the data center is costlier as it requires

logistics. Moreover, failures at the edge may require more urgent repairs. (Failed resources in a

data center don’t always need to be replaced due to high redundancy. Modern management

software for data centers simply retires failed equipment and carries on without it.)

Form factor, packaging and hardening: Equipment is packaged differently in the data center from

outside it. Data centers are typically large, environmentally controlled, high-security buildings

with arrays of equipment racks, whereas edge equipment is often in less controlled environments

such as a vehicle, street-corner cabinet or on a factory floor, requiring better hardening and

resilience to environmental extremes and power variations.

Tampering: Equipment outside a locked data center needs better tamper protection, for

example, locked cabinets and the exclusion of external ports that could heighten security risks.

Remote monitoring and management of edge equipment is a challenge. For example, over-the-

air software updates for cars requires resilience to packet loss and interrupted connections to

ensure successful updates.

IIoT Distributed Computing in the Edge

 - 4 -

Network bandwidth: Bandwidth to transport data between IoT devices and data centers is often

expensive and less than 100% reliable. By moving computation and storage nearer to where it is

used, less data is moved through the network.

Energy efficiency: Edge equipment is often constrained by available energy, especially if run on

batteries or renewable sources. Higher power also creates cooling complexities.

Data residency may be governed by policy and regulation, such as the Health Insurance

Portability and Accountability Act (HIPAA privacy) or government prohibitions. Some data, such

as trade secrets, cannot leave the premises.

These factors, especially when taken together, motivate distributing computing to the edge.

What was once limited to the data center can now be distributed, enabling, in particular, digital

transformation in the industrial internet of things (IIoT).

1.2 DESIRED PROPERTIES

To gain these benefits at low risk, distributed computing in the edge requires several properties:

Above all, an IoT system must be trustworthy. This property is the conjunction of security, privacy,

safety, reliability and resilience, and is especially important in industrial IoT systems where lives,

limbs and the environment are at stake.

Manageability: Distributed computing in the edge has many widely dispersed, interconnected

nodes. These nodes participate in a network and each run multiple applications and services

which, in turn, interact with each other to deliver system functionality. Each node, IoT device and

application service needs to be discovered, commissioned, monitored, updated and

decommissioned over the lifetime of the system.

Composability is the ability of edge elements to aggregate structurally and functionally with one

another. Edge elements must be separable and orthogonal to permit the substitution of one

element associated with an interface without affecting other elements in the system. In turn, the

resulting application services may be composed to participate in higher-level applications,

improving time-to-market as interoperable elements are quickly assembled into various systems

that can perform the required functions. This can create a multi-party software marketplace and

helps avoid supplier lock-in.

Autonomy: edge nodes can effectively operate (at least temporarily) in isolation. When

connectivity to a data center or adequate computational throughput is unavailable, tasks can be

executed within nodes away from the data center, or queued until connectivity is restored.

Interoperability is the ability of edge elements to exchange information with one another and

interpret this information consistently. Seamless interoperability between edge computing

infrastructure services needs technical, syntactic, semantic interoperability and openness, as

described in detail in the sidebar below.

https://www.iiconsortium.org/pdf/Managing_and_Assessing_Trustworthiness_for_IIoT_in_Practice_Whitepaper_2019_07_29.pdf

IIoT Distributed Computing in the Edge

 - 5 -

Openness means that all the requirements and implementation attributes of the elements can

be implemented by anyone. Any supplier is free to produce their own versions of these elements

that can interoperate and interchange with elements provided by other suppliers. Openness

supports interoperability.

Levels of interoperability are defined in the IIC’s Industrial Internet Connectivity Framework (IICF)

by what can be exchanged. The levels build one upon another:

Technical interoperability is the ability to exchange information as bits and bytes (e.g. pencil

scribbles), assuming that the information exchange infrastructure (e.g. pencil and paper) is

established and the underlying networks and protocols are unambiguously defined.

Syntactic interoperability is the ability to exchange information in a data structure (e.g. using

words from a language), assuming that a common protocol to structure the data is used (e.g.

the language’s alphabet and rules of grammar) and the structure of the information exchange

is unambiguously defined (e.g. whitespace, punctuation). Syntactic interoperability requires

that technical interoperability be established.

Semantic interoperability is the ability to interpret the meaning of the exchanged data

unambiguously as information in the appropriate context. For example, a “sentence” such as

“There are three” could mean anything. Three apples? Three cars? Three degrees? Three leaf

blowers?

For example, a service hosted in the edge receives shared data over a link (technical) and

unmarshalls the sequence into a data structure with an array of 2 by 100 floating point values

(syntax). It then passes the array to a health monitoring service that runs an event-detection

algorithm on the array where the first row is the time history and the second row is a temperature

(semantic). Syntactic interoperability is critically important also because it allows software to

share data structures, so they can work together even if written in different languages or

transmitted by frameworks built by different vendors. It also enables generic tools that can

introspect and process the data. With both syntactic and semantic interoperability, edge

computing services can exchange and consistently interpret data with other edge services, IoT

devices and the data center. If that data exchange is further built upon open standards, systems

or software from multiple suppliers can reasonably be expected to interoperate.

These properties, and the technical mechanisms used to support them enable the business

benefits that can be derived from distributed computing in the edge.

https://www.iiconsortium.org/IICF.htm

IIoT Distributed Computing in the Edge

 - 6 -

2 A FRAMEWORK

A distributed computing framework is a configurable and scalable architecture that can extend

cloud computing capabilities from data centers to the edge. Edge computing nodes and the

communication paths between them are two essential parts of an edge system.

An edge system spans IoT devices, sensors and actuators, and IoT gateways, mediating those

devices with the internet, servers and data ingestion services at the data center. These elements,

taken together, make up an edge system. Edge systems perform the three primary functions of

IoT: collecting, analyzing and acting. They collect data from sensors and other IoT devices. They

analyze this data and reach conclusions about what must be done and finally, they act, by storing

results or sending messages to actuators and other IoT devices to control the physical world.

Edge computing is distributed computing performed near the edge, where nearness is

determined by system requirements. Edge computing brings many of the important capabilities

of cloud computing to the edge. Edge is the boundary between the pertinent digital and physical

entities, delineated by IoT devices. This contrasts with data centers as the data processing and

storage resources are closer to where data is produced from sensors (in smart buildings, traffic

lights, oil rigs, airliners and cars) or consumed for actuating devices. Some standards for edge

computing architectures are already in commercial deployment, for example ETSI Multi-access

Edge Computing (MEC).

A data center is a facility containing a collection of connected equipment that provides

communication, computing and storage resources. In the context of an edge system, a data

center provides computation as a service, using virtualized computing and the economies of scale

that come with it. It could be public (e.g., Amazon Web Services, Microsoft Azure and Google

Cloud Platform), private or a hybrid or multi-cloud approach. Cloud computing is a paradigm for

enabling network access to a scalable and elastic pool of shareable physical or virtual resources

with self-service provisioning and administration on-demand. Cloud computing was traditionally

associated with data centers, but can now be applied at the edge (and offered as software stacks

by some of the same providers).3

The data center and its servers, networking equipment and storage engines constitute the

highest layer of the distributed computing framework. They are typically located in secure

facilities, and managed as part of a large, scalable service provider, private or hybrid network.

They are interconnected with the edge computing nodes via high speed data networks (typically

fiber optical facilities in the 100Gb/s throughput range). Many of the highest-level analytics,

storage and management functions that support edge systems reside in data centers. Data

centers often implement hyperconverged infrastructure, a coherent combination of virtualized

3 There are many stacks, both proprietary and open. These are the most popular. See:

https://aws.amazon.com/greengrass/, https://azure.microsoft.com/en-us/products/azure-stack/edge/

https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/products/azure-stack/edge/

IIoT Distributed Computing in the Edge

 - 7 -

computation, networking, and storage subject to unified management, often implemented on

inexpensive servers. These techniques can also be applied away from the data center.

Figure 2-1: Illustration of Multi-layer Edge System

The IoT devices at the bottom of Figure 2-1 include all sensors, actuators and other endpoint

devices in the IoT system, such as user interfaces, smart mobile devices, displays, industrial

control systems and integrated intelligent endpoints. Sensors measure physical parameters

associated with the real world, digitize these readings and send them through the layers of edge

computing nodes toward the data center. Some implementations complete all their processing

and storage activities in one or more layers of edge computing nodes, while others process and

store their data in a data center. When the processing is complete, actuators can optionally

accept digital commands from the data center and edge computing nodes and change physical

parameters in the real world, creating a closed-loop control system. Together the IoT devices

interface the digital world to the physical world.

IIoT Distributed Computing in the Edge

 - 8 -

Some IoT devices can be quite simple, for example, a temperature sensor that generates one

reading a minute. Others can be complex, for example, a security camera that has significant

processing power capable of executing local video analytics, or a control system that accepts set

points as inputs and uses those parameters to guide real-time processes. The more sophisticated

IoT devices are, the more they are considered a conjunction of the raw sensor and a layer of edge

computing node, integrated into a single physical and logical entity.4

Edge computing nodes are individually addressable and manageable elements in the IIoT

distributed computing system. They offer computation, networking, storage and control services

closer to the data-producing sources or information-consuming users.

Edge computing nodes are deployed in one or more layers between the IoT devices and the data

center. Edge computing nodes in the same layers can communicate east-west, and with other

layers north-south. They may also be grouped in clusters, so that a cluster may be managed

collectively in the same way as a node. The number of layers and arrangement of clusters may

vary from a few (as when IoT sensors are connected directly to the data centers) to a dozen or

more (as in smart buildings and smart cities, in which devices in different rooms, wings, floors of

a building and different neighborhoods of a city are organized into a deep continuum of layers).

Fog computing refers to an architecture pattern for trustworthy, distributed edge computing that

has been used previously, especially by the OpenFog Consortium (which joined forces with IIC in

January 2019, and originated of some of the material in this document). Subtle distinctions that

may exist between the terms edge and fog are not considered important in the marketplace, so

we use “edge” exclusively.

Our focus for distributed computing in the edge is everything between the lowest layer of the

data center and the IoT devices shown in Figure 2-1.

2.1 EDGE SYSTEMS

One approach for an edge system comprises the functional components illustrated in Figure 2-2.

Above the dotted line are the edge system-level functions that act across the entire system and

are typically centralized and virtualized—usually in a data center.

The system security management module manages security at the system level, and typically acts

over multiple edge computing nodes. This is where system-level security policies, security

analytics, crypto key management and similar centralized functions are implemented. Data

centers are the preferred hosting location for this module.

The system provisioning and management module is responsible for the centralized

configuration and management capabilities of the edge system. It performs the centralized

functions that are controlled by a network operations center, and distributes the control

4 This is why the edge boundary is fuzzy.

IIoT Distributed Computing in the Edge

 - 9 -

messages and collects the status messages from multiple edge computing nodes. This module is

typically also implemented in data centers.

Below the dotted line are multiple edge computing nodes, arranged in overlapping layers. Within

each edge computing node, the mainline flow of computation is in the center, the end-to-end

security capabilities on the left (colored pink), and the management capabilities (gray) on the

right. Subsequent diagrams decompose the functions within the trusted computing module,

security and management boxes, respectively. The application execution environment runs

application software.

Figure 2-2: Functional Composition of an Edge Computing Node

The trusted computing module is built on innately trusted hardware, and includes the trusted

execution environment(s) with their chains of trust linked to the hardware root-of-trust to

provide trusted application services to the rest of the edge computing node. There may also be

mechanisms that allow third parties to verify the security state of the node, so that other edge

computing nodes may verify that they can trust this node. This is the foundation upon which

trustworthy applications can be built, secured and managed. The trusted computing module and

its subcomponents are described in section 3.

The end-to-end security module ensures communication and information security of the

messages passing between the application services running in the edge computing nodes. Its

security capabilities are interwoven into the framework. All the security functions are

IIoT Distributed Computing in the Edge

 - 10 -

continuously running in parallel with the mainline functions. The end-to-end security module and

its subcomponents are described in section 4.

The node management module is responsible for configuring, monitoring and updating the

system hardware and software resources in an edge computing node.

The application and service management module is responsible for deploying, configuring,

monitoring, scaling and updating the application services residing in the edge computing node.

The node management module and application & service management modules and their

subcomponents are described in section 5.

The application execution environments comprise application software that runs on the edge

computing nodes. This is where the mainline software the user depends upon runs, and is the

reason for deploying the edge system in the first place. The software running here may be

untrusted, but the other components of the edge computing node and edge system “wrap” it in

a way that makes the overall edge system trustworthy and manageable.

2.2 COMMUNICATION PATHWAYS

Communication between edge computing nodes is needed to distribute data and computation

across nodes.

For this approach, north-south communication links traverse layers from the data center to

things, running in a generally vertical direction on Figure 2-1. These are the links that IoT devices

use to talk to edge computing nodes, edge computing nodes use to talk to edge computing nodes

on adjacent layers, or edge computing nodes use to talk to the data center. The bandwidth on

each of these layers of links is influenced by the number of sessions and users supported on parts

of the networks, and the size and generation rates of the data sets transmitted. Layers closer to

the data center are more likely to be higher bandwidth pipes (such as fiber) and serve the

aggregate traffic needs of a large number of devices below them. Links closer to the devices are

more likely to be wireless or lower bandwidth copper links. Their bandwidth is often constrained

by the available energy in small or battery-powered devices. As data moves up the layers, nodes

along the way digest, analyze and aggregate it, balancing the capacity on all links.

East-west communication paths in this architecture pattern run in a generally horizontal direction

of Figure 2-1, orthogonal to the north-south links. They interconnect edge computing nodes on

the same layer, and serve three primary purposes.

First, they help to balance load between peer-level edge computing nodes. If one edge

computing node is experiencing an overload, it can shuttle some of its traffic to a nearby edge

computing node that is less heavily loaded. This balances the loads on the nodes in a layer and

improves overall network resource utilization.

Second, the east-west links improve resilience and fault tolerance. If a higher-layer edge

computing node or the north-south link to it has failed, the blocked traffic can traverse one or

IIoT Distributed Computing in the Edge

 - 11 -

more east-west links and route around the problem. Also, for storage applications, these links

can make and retrieve redundant copies of stored files across several nodes. In this way, if a

single storage device or edge computing node fails, the redundant copies on other nodes on the

same layer still have the critical data.

Third, east-west links are used to build context across regions of a system. One edge computing

node can send results to adjacent edge computing nodes, where they are fused with local results

to create a larger context. As a concrete example, in a security camera network, each edge

computing node analyzes the video from the cameras local to it and describes the positions,

speeds and directions of recognized objects to adjacent edge computing nodes. They correlate

objects on the boundaries of their cameras, fusing more views of the same object or tracking as

it moves across the views of many edge computing nodes. This enhances situational awareness,

and is more scalable and resilient than can be achieved with one huge edge computing node

processing signals from all the cameras.

2.3 DEPLOYMENT MODELS

The topology of edge computing nodes can be optimized to match the requirements of the

applications running on the network. Some networks will favor fewer layers between the data

center and the IoT devices but support more peer-level IoT devices per layer. Other network

deployments prefer to split their functionality between a larger number of layers, with fewer

nodes in each layer.

The choice of topology depends upon the specific requirements, performance expectations, and

functional partitioning of the application services running on the edge computing nodes. Some

are dominated by the need for high single-thread processing performance, and would benefit

from more layers. Others can execute efficiently in many parallel edge computing nodes. Then,

fewer layers with more edge computing nodes per layer makes sense. Storage operations can

also be separated and optimized across multiple layers and nodes. The way that edge computing

nodes are assembled should reflect the data gravity requirements of the applications.

In a simple edge deployment, an edge computing node is an assembly of hardware and software

components that implement the functions shown on Figure 2-2. Such a stand-alone edge

computing node can be installed anywhere in the edge system to provide computing, networking

and storage services close to data producers or consumers.

In a slightly more complex model of edge deployment, multiple logical edge computing nodes

may be instantiated in a single physical edge computing node. They share the same hardware

platform, but are fully isolated from each other. This deployment model is modular, scalable and

efficient. It is the primary support mechanism for multi-tenancy.

IIoT Distributed Computing in the Edge

 - 12 -

In the most complex model, a logical edge computing node is assembled from the one or more

physical or logical5 edge computing nodes. One version of this merges the capabilities of multiple

physical edge computing nodes, which may be peers on same or adjacent layer(s), to handle a

computation, networking or storage load heavier than a single physical edge computing node can

manage. In a variation, multiple physical edge computing nodes are grouped into a fault tolerant

cluster, so that a failure in one of the edge computing nodes will be mitigated by its peers.

2.4 SUPPORTING TECHNOLOGIES

Any system implements supporting technologies needed to realize the system. A system that

supports distributing computing in the edge will use at least these supporting technologies:

Ubiquitous connectivity is an enabler of distributed computing: the ability of edge elements to

exchange information. Without connectivity, distribution would be impossible.

Virtualization is the ability to separate logical functions from the physical device. Virtualization

supports increasing load dynamically. Some safety- and time-sensitive environments

(automotive for instance) impose restrictions on virtualization flexibility so that there is no

oversubscription of resources. Virtualization is enabled by hypervisors, which are supervisory

agents that create, run, and monitor virtual machines in a host machine. Hypervisors must

account for the widely distributed infrastructure and the challenging management environment

of edge computing nodes.

A software container6 is a structure that allows a single deployable image or data structure to be

used across different operating platforms. They usually include a user-space application and its

dependencies as well as networking and storage contexts. The standards-based interoperability

of containers provides a high degree of confidence that a developer’s applications will run on

deployment servers (in the data center or the edge), different from where they are developed

and tested. Container workloads can run at different places, from the data center to the various

layers of edge and IoT devices, and can change dynamically to optimize performance of the

overall system. A container runtime is software that manages containers and container images

on a node. The Open Container Initiative (OCI) has developed a standard specification for

container runtime and provides a reference implementation called runC. Edge systems can

manage and orchestrate containerized application services through a container runtime residing

on each edge computing node. Techniques such as service mesh can handle complex

communication tasks between microservices.

Manual operation of these devices and nodes is impossible. We need orchestration, the ability

to schedule and distribute computing workloads, storage actions and network bandwidth across

5 We contrast “physical” with “logical”. The term “virtual” is also used, but that can be confused with the

related concept of “virtualization”.
6 “Software container” is rigorously defined in the IIC vocabulary. We use “container” hereafter.

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc

IIoT Distributed Computing in the Edge

 - 13 -

resources automatically, and modify them dynamically as system conditions change. This is

driven by policy to minimize any requirements for human intervention in the operation of the

system. Container orchestration technologies like Kubernetes (k8s) provide a set of services to

help deploy and manage distributed nodes and applications in edge systems. Specifically, they

help manage distributed applications by scaling them up and down, performing updates and

rollbacks, and self-healing. Changes to the deployed system are indicated through changes to the

guiding file declaration, which k8s automatically detects and to which it attends.

Load balancing is necessary to achieve the desired scalability and performance properties in edge

systems. Workloads are often much larger than can be run on a single edge computing node, and

load balancers distribute different parts of the workload to different edge computing nodes. This

distribution could split complete applications from different users onto different nodes, or divide

the work into different phases split among nodes at different layers.

Heterogeneous computing and storage is the ability to use the most efficient hardware

implementation for the application services workload. Heterogeneous processors include

traditional CPU cores, graphics processing units, digital signal processors, tensor processing units

and field programmable gate arrays. Heterogeneous storage could include cache, RAM, flash,

rotating disk, networked storage and off-line backup. These capabilities are already widely

deployed in data centers, and are migrating quickly to edge computing nodes.

https://kubernetes.io/

IIoT Distributed Computing in the Edge

 - 14 -

3 TRUSTED COMPUTING MODULE

Trustworthiness is the conjunction of five properties: security, privacy, safety, reliability and

resilience. This section describes how to extend trust from hardware up to the application level.

Figure 3-1: Essential Components of a Trusted Computing Module

3.1 BOOTING TRUSTED HARDWARE

The trusted computing module7 comprises two primary components: trusted hardware equipped

with hardware root-of-trust and trusted firmware, and one or more trusted execution environments8

that execute code using the trusted hardware. The trusted execution environment includes a

subcomponent of trusted application services. These are the foundational components of a

trustworthy system (Figure 3-1).

7 In this context, a module is a set of hardware or software resources that can be composed together to

build the required system properties.
8 Also called “secure enclaves”.

IIoT Distributed Computing in the Edge

 - 15 -

3.1.1 TRUSTED HARDWARE

Trusted hardware provides isolation as well as data and execution access-privilege guarantees.

There is no definitive definition of hardware root-of-trust (hRoT9), but at a minimum, each device

should have immutable boot code in read-only memory, with access to the cryptographic keys

and certificates needed to verify the subsequent loads of boot. A unique device ID used to

authenticate the device and a unique device private key to protect platform secrets are also part

of the hRoT. The trusted hardware may run an operating system or a hypervisor. Operating

systems (OSs) create and isolate processes from one another and hypervisors create virtual

machines that contain OSs and applications isolated from one another.

3.1.2 TRUSTWORTHINESS OF BOOT PROCESS

There are various ways to boot a system in a trustworthy fashion. They all employ trusted

hardware, without which no claims can be made about a system’s trustworthiness. At system

power-on or reset, the trusted hardware equipped with a hardware root-of-trust transfers

control to an immutable first load of boot. The hRoT then loads and verifies the authenticity and

integrity of the next load of boot. Each successive boot image is loaded by the previous image

and the integrity of the image is checked before control is transferred to it. Upon completion of

each stage of this process, secure log entries can be created, as proof that the steps necessary to

create the chain of trust all completed in the correct order. The signed boot log can then be used

to attest to the security state of the platform using a third-party verifier, called remote

attestation. This gives the edge system confidence that an edge computing node is trustworthy.

The UEFI Secure Boot10 is commonly used in the server community. On the other hand, different

proprietary mechanisms are employed by embedded system vendors to implement secure boot.

These proprietary approaches inevitably lead to proprietary mechanisms for system updates as

well. To avoid unnecessary complication, Linaro and its members is introducing the UEFI interface

to U-Boot11 so that embedded operating systems can leverage UEFI Secure Boot, UEFI Measured

Boot and secure Update Capsules with U-Boot.

Secure firmware and software update: If a device is to remain secure, unauthorized updates must

be prevented. Updates should be verified by a secure service before being stored in a secure

location. As code is loaded and verified at runtime, the integrity and authenticity are guaranteed.

Physical device access protections: If unauthorized persons can physically access the device and

the possible threats outweigh the cost of preventing a breach, then tamper-resistant hardware

with tamper-detection mechanisms are necessary. The device behavior on detection of a

9 Initial RoT (iRoT) is an equivalent term.
10 Unified Extensible Firmware Interface (UEFI) Specification v.2.8, §23.
11 UEFI is a specification that is implemented by commercial products (including American Megatrends,

Phoenix and Insyde) or open source software (EDK2 and now U-Boot).

https://www.linaro.org/engineering/edge-and-fog-computing/

IIoT Distributed Computing in the Edge

 - 16 -

tampering event should be a programmable policy ranging from bricking the device to logging

the event and continuing.

3.1.3 TRUSTED EXECUTION ENVIRONMENT

A trusted execution environment (TEE) provides an isolated environment for the initial boot. A

TEE isolates trusted code and data from untrusted code and data that might reside in

applications. TEEs may provide trusted services during the life of the system or the life of the

application address space. Some examples of trusted services are secure key generation, storage

and retrieval, and secure, persistent storage.

TEEs may also host trusted applications; examples of trusted applications in the edge include

confidentiality and integrity protection of sensor data. And TEEs are also at the heart of enhanced

trusted computing models, specifically:

Confidential computing: Cloud technologies allow inter-tenant isolation while confidential

computing technologies isolate tenants from infrastructure administrators.

Multi-ownership: A paradigm of confidential computing that preserves information privacy and

sovereignty and enforces usage governance to satisfy regulations and business policies.

Hardware features, and maybe microcode, provide a secure isolated and protected environment

so the TEE is isolated from the application execution environments because secrets cannot cross

the boundary between trusted and untrusted execution environments. However, the application

execution environments may request a service to execute code in the TEE.

3.2 APPLICATION EXECUTION ENVIRONMENTS

Application execution environments (AEEs) provide the higher-level infrastructure riding upon

the TEE to execute the application services. They consist of a software backplane that enables

the composability of modular software, and application support modules that provide common

platform support and application programming interfaces (APIs) to the application services.

The bare-metal OS kernel and hypervisor kernel are implicitly trusted; they control privileged

hardware and software contexts in the AEE. Kernels can still withhold service in the AEE by not

dispatching some work and they can still create and destroy processes and VMs. They do not

have to be trusted to the same degree because they cannot access the code, data or the

execution context of the TEE. If a service is withheld by the AEE, confidentiality and integrity

guarantees are still in place, but availability guarantees are not.

The untrusted execution environment provides an execution environment in which hypervisor

services, OS services, containers and application services run. It runs untrusted code, and TEEs

may be contained in a non-secure application service address space using a protected memory

area within the address space that is not accessible to any other address spaces in the AEE.

IIoT Distributed Computing in the Edge

 - 17 -

A software backplane is analogous to a hardware backplane that interconnects hardware

modules, but applied to modular software components—it provides an elastic computation

infrastructure. Distributed applications communicate with each other via the connectivity

elements of the software backplane. The software backplane includes the OS, hardware drivers,

network connectivity functions and other software infrastructure elements to support the

application services.

Application support services, like data communication protocols, data stores, web servers,

runtime engines often run as containers or micro-services on top of the software backplane and

provide shared services to the application services running above. These application support

functions are often implemented as common platforms, usable by all the application services

that may be running concurrently on a multi-tenant edge computing node. These platforms (and

the layers below them on Figure 3-1) are often horizontal, meaning they are equally applicable

to all vertical markets or IoT application domains.

Application services implement the user’s software and interact with the rest of the edge

framework. It includes various application-specific protocols, algorithms and APIs that enable

workloads to be executed on edge computing nodes and edge systems. The code for application

services is often written by experts in the specific domain areas that are supported by an edge

computing node (for example, transportation, medical, factory automation or smart city

applications would be created by experts in these respective areas).

3.3 INTERFACES

A set of standard APIs have been established to allow application services to receive secure

services through the software infrastructure from the trusted services running in the trusted

execution environment. Standard APIs include the Cryptographic Token Interface (PKSC#11), the

Trusted Platform Module (TPM) Mobile Command Response Buffer (CRB) Interface and the

GlobalPlatform TEE Client API.

The Cryptographic Token Interface (a.k.a. Cryptoki or PKCS#11) is a Public-Key Cryptography

Standard (PKCS) that defines a platform-independent API to interact with cryptographic tokens

such as hardware security modules and smart cards embedded in the trusted hardware platform.

The API defines commonly used cryptographic objects including RSA keys, X.509 Certificates,

AES/DES keys as well as the functions to create, modify, use and delete those objects. Most

commercial certificate authority software uses PKCS #11 to access the certification authority

signing key or to enroll user certificates.

The TPM 2.0 Mobile Command Response Buffer Interface is a kernel interface to a TPM. For the

software infrastructure to communicate with a TPM embedded in the trusted hardware, it puts

a command in the TPM command buffer and sets a flag. In response, the TPM executes the

command in the buffer, puts its response in the response buffer and clears the flag.

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-command-response-buffer-interface-specification

IIoT Distributed Computing in the Edge

 - 18 -

The GlobalPlatform TEE System Architecture defines two APIs. The TEE Internal API specifies a

common interface for trusted application services in the TEE to access the trusted hardware. The

TEE-Client API, on the other hand, is an external interface that allows applications in an AEE to

call trusted application services to perform secure operations on their behalf. These secure

function calls are converted by the TEE kernel into calls to the corresponding trusted application

services. An implementation of the TEE Client API must contain a client API library and an AEE

communication agent shared among all client application services. Currently, the Open Portable

Trusted Execution Environment (OPTEE) under Linaro and the Trusty TEE under Android are the

two popular open-source implementation of GlobalPlatform TEE specification. Trusty is more

light-weight than OPTEE.

https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://www.op-tee.org/
https://www.op-tee.org/
https://source.android.com/security/trusty

IIoT Distributed Computing in the Edge

 - 19 -

4 END-TO-END SECURITY MODULE

Following International Telecommunication Union - Telecommunication Standardization Sector

(ITU-T) X.805 Recommendation,12 the End-to-End Security Module in this architecture comprises

three components: communication security services, information security services and security

incident monitoring & response. Figure 4-1 illustrates these components and shows the

interfaces among them.

Figure 4-1: Functional Components of the End-to-End Security Module

4.1 END-TO-END SECURITY SERVICES

End-to-end security services, for communication and information security, run in an end-to-end

security module in each node. In a system supporting hardware virtualization and application

service containerization, those services should run between the communication ports of the

containerized application services regardless of whether these services are located within the

same or different edge computing nodes. Cryptographic functions that implement end-to-end

security must be performed by the trusted application services running in the trusted execution

environments instantiated in the trusted computing modules of the edge computing nodes.

These services must be requested through the external service interface provided by trusted

12 Zeltsan, Zachary. "ITU-T Recommendation X. 805 and its Application to NGN." _28 4 (2010).

IIoT Distributed Computing in the Edge

 - 20 -

application services in the trusted computing module. Information flowing between the trusted

execution environment and the application execution environment must also be protected by

information isolation among different application services and between multiple tenants.

Information security services: Information exchanges among application services should also be

protected, especially access control based on identities, attributes, roles or (access control)

capabilities of the communicating parties. They should encompass authentication, authorization

and accounting services. The scope of protection should include:

• data-in-use: data being processed or residing in memory during computation,

• data-at-rest: data maintained in local or remote mass storage and

• data-in-motion: data moved through communication networks.

Communication security services: Information exchanges among application services must be

protected to ensure confidentiality and integrity of the exchanged information using strong

cryptographic functions, and the authenticity of the communicating parties through verification

of their identities. These services should include the following, as recommended in ITU-X.800:13

• confidentiality

• integrity

• authentication

• (optionally) nonrepudiation

They should protect the communication channels across the edge computing system. The IICF

defines the required communication security functions to:

• authenticate endpoints before allowing them to participate in a data exchange,

• grant read and write permissions to endpoints participating in a data exchange,

• ensure data integrity and trustworthiness of the data delivery, so that received data is not

tampered with while stored or in transit and

• encrypt sensitive data flows (selectively, because some high-volume data flows may not

be sensitive enough to warrant the overhead of encrypting and decrypting the data).

The decision to encrypt should be based on a risk-impact assessment. The access-control-model

should be sufficiently fine-grained to limit the permissions of each endpoint narrowly to the

operations and services needed for performing their intended functions. This enables the

principle of least privilege that limits the consequence of security breaches and insider attacks.

The security incident monitoring and response service continuously monitors the edge computing

nodes to detect functional and operational anomalies and initiate proper responses. Unlike

similar services for conventional computer systems, security incident monitoring and response

13 Rec, ITU-T. "X. 800 Security Architecture for Open Systems Interconnection for CCITT Applications." ITU-

T (CCITT) Recommendation (1991).

https://www.iiconsortium.org/IICF.htm

IIoT Distributed Computing in the Edge

 - 21 -

operation in an edge computing system rarely requires human intervention. They rely mostly on

automatic anomaly detection, machine-to-machine communication and autonomous responses.

4.2 SYSTEM SECURITY MANAGEMENT

Communication and information security must be managed at the system level and enforced

over individual services running on the edge computing nodes. Successful security management

over such a distributed, multi-layer infrastructure must have the following support mechanisms:

Identity management: A federated identity management system is needed to track and manage

nodes and services. It must be able to create and manage unique identifiers and verifiable

security credentials for every entity in the system, including IoT devices, edge computing nodes

and application services running on each node.

Credential and relation management: The credentials and capabilities of every entity above must

be issued by trusted authorities and verifiable by all the interacting entities. Transient and

permanent relations among them should be auditable and traceable with high availability. Two

technologies are commonly used to support these functions:

• Public key infrastructures (PKI): Public key certificates issued by trusted certificate

authorities remain the most popular form of security credentials and public key signature

is still the standard mechanism for offering non-repudiation protection.

• Distributed ledgers (DL) serve as a trusted public repository and the smart contracts they

maintain can provide a reliable and scalable mechanism to track relationships established

among a vast number of entities.

Policy management specifies, decides and enforces communication and information security

actions based on verifiable security policies from multiple stakeholders. The eXtensible Access

Control Markup Language (XACML) 3.0 architecture is a commonly used architecture and it

comprises the following functional components:

• Policy administration point (PAP): an element that manages the security policies;

• Policy retrieval point (PRP): an element in which the XACML policies are stored;

• Policy information point (PIP): An element that acts as a source of attribute values;

• Policy decision point (PDP): An element that evaluates the security service requests

against the applicable security policies before issuing decisions;

• Policy enforcement point (PEP): An element that intercepts a user's security service

request, receives a decision from the policy decision point and acts on it.

The XACML policy management operation follows the procedures outlined below:

• a user sends a request, which is intercepted by the policy enforcement point;

• the policy enforcement point converts the request into a XACML authorization request;

• the policy enforcement point forwards the authorization request to the policy decision

point;

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

IIoT Distributed Computing in the Edge

 - 22 -

• the policy decision point evaluates the authorization request against the applicable

policies maintained by the policy retrieval point and then decides whether to permit or

deny the request;

• the policy decision point then returns the decision to the policy enforcement point, which

then carries out the decision.

XACML began as a mechanism to manage access control policies and expanded to manage and

enforce most communication and information security policies.

4.3 INTERFACES

The interfaces between the end-to-end security service module and other modules are:

Communication security interfaces are protocols that provide communication-security services

to information exchanges among all the entities in an edge computing system. These exchanges

can go through three kinds of secure communication pathways:

• node-to-data-center (northbound) secure communication pathways,

• node-to-node (east/westbound) secure communication pathways and

• node-to-device (southbound) secure communication pathways.

Specifically, the southbound pathways support communications between devices and edge

nodes using APIs based on industrial protocols, such as Modbus, OPC-UA, MQTT, DDS and REST.

Section 10.1.3 of the IEEE standard for adoption of OpenFog reference architecture for fog

computing has a detailed specification of these secure communication pathways and the

standard protocols being used. Information security interfaces: Information security can be

implemented by enforcing both mandatory and discretionary access control policies over

information exchanges across a multi-layer edge system. As an example, Trusted Network

Connect (TCN) developed by the Trusted Computing Group serves as a network information

security standard for enforcing end-to-end access control in multi-vendor environments.

StrongSwan offered an open-source TCN implementation based on its IP Security (IPsec) protocol

stack.

Security service interfaces connect user’s application services with the software infrastructure

and the end-to-end security modules in an edge computing node. It provides a common set of

APIs for the application services to access cryptographic and security services.

The IETF Generic Security Service Application Program Interfaces (GSS-API), (version 2, update 1

RFC 2743, RFC 2744) were the first standard sets of vendor-independent security APIs. They used

the exchange of opaque messages, (“tokens”), to hide the implementation detail of security

services from higher-level application services. Kitten is the successor of GSS-API and the

Kerberos authentication system. It integrated the Simple Authentication and Security Layer

architecture into its specification.

https://standards.ieee.org/standard/1934-2018.html
https://standards.ieee.org/standard/1934-2018.html
https://trustedcomputinggroup.org/work-groups/trusted-network-communications/
https://trustedcomputinggroup.org/work-groups/trusted-network-communications/
https://wiki.strongswan.org/projects/strongswan/wiki/TrustedNetworkConnect
https://tools.ietf.org/html/rfc2743
https://www.ietf.org/proceedings/62/kitten.html

IIoT Distributed Computing in the Edge

 - 23 -

Security management interfaces connect the end-to-end security service module of an edge

computing node to one or more system security management module(s) in the edge system that

provides identity, credential and security policy management. Currently, there exist no common

standard(s) for the security management interfaces although the XACML 3.0 architecture has

been widely accepted for policy management. The pod security standards currently being

developed in the Kubernetes community to specify the policies for running containers may

become a standard way for managing container security on a Kubernetes platform.

https://kubernetes.io/docs/concepts/security/pod-security-standards/

IIoT Distributed Computing in the Edge

 - 24 -

5 SYSTEM MANAGEMENT AND PROVISIONING MODULES

An edge computing system may comprise a great number of widely dispersed, interconnected

nodes each running multiple application services that interact to deliver system functionality.

Each node needs to be discovered, commissioned, operated and decommissioned over the

lifetime of the system. In addition, the application services running on these nodes need to be

deployed, configured, monitored, updated, scaled, and deleted.

Edge computing system management in this context is a large and complex set of capabilities.

Core to the concept of edge computing is the use of elastic computation across nodes, layered

below the data center. To respond to varying workloads, an edge computing system can add or

remove resources quickly to execute on more or fewer edge computing nodes, or repartition

workloads to optimize efficiency. Edge computing system management needs to orchestrate

elastic computing resources to achieve this. Elastic computing resources such as VMs and

containers can be clustered as a service. A service distributes workloads requested by clients

across clustered computing resources. Then, elastic computing resources for a service can be

automatically scaled depending on workloads. Managing and orchestrating this elastic

infrastructure is critical to the functionality of a distributed edge system.

Management capabilities are split into levels. At the node level, management is responsible for

the configuration and the update and monitoring of all the low-level hardware and software

resources in an edge computing node. The application and service management functions are at

a higher level, responsible for deployment, configuration, update and monitoring of application

services.

The system provisioning and management functions work at the system level as a centralized

controlling and monitoring capability. In practice, the capabilities below the dotted line on Figure

5-1 run primarily on individual edge computing nodes, while those above are often run in or near

a data center.

An edge computing system contains myriad resources that need to be managed. This is described

by a resource model that can be constructed automatically through discovery within the system

management.

Specific functions of edge system management are to:

• collect and maintain the resource model,

• manage connected physical resources (e.g., sensors and actuators), computing resources

(e.g., VMs and containers), storage and networking and possibly data center resources,

• build and maintain hierarchy and containment relationships of all resources (e.g., the

relationships between a VM and a container running on the VM) and

• maintain a topology of the connectivity including physical and logical networks and all

associated interfaces.

IIoT Distributed Computing in the Edge

 - 25 -

5.1 COMPONENTS

System management components for distributed computing in the edge comprise a centralized

management module and management modules residing in edge computing nodes.

System provisioning and management is a set of system services at the system level. It interacts

with the modules for node and application management running in an edge computing node to

support centralized system management and orchestration of application services running in

edge computing nodes. This is typically implemented in data centers and provides an API for user

interface tools.

The application & service management module manages the lifecycle of an application service in

a virtual machine or a container. After registering with the system provisioning and management

module, an edge computing node can receive control messages from the management system

for deploying, updating and deleting application services. It also reports status of running

application services back to the management system.

The node management module handles configuring, monitoring, and updating the system

hardware and software resources in an edge computing node. This module needs to be

registered in the system provisioning and management module before it can be used. After

registration, the management system can operate the node management functions remotely.

Figure 5-1: Functional Components of Edge System Management and Provisioning Modules

IIoT Distributed Computing in the Edge

 - 26 -

5.2 INTERFACES

The blue arrows on Figure 5-1 represent interfaces associated with system management.

5.2.1 NODE MANAGEMENT MODULE INTERFACE

The interface between the node management module and the system provisioning and

management configures, monitors and updates system hardware and software resources in an

edge computing node from the centralized management system. Resources managed by this

interface include:

• system information (e.g., instruction set, operating system),

• device identification,

• status of a node,

• network addresses for edge computing nodes and

• resource capacity of a node (e.g., CPU and memory).

5.2.2 APPLICATION SERVICE MODULE INTERFACE

The interface between the application service management module and the system provisioning

and management is used for remote interactions between the management system and edge

computing nodes to provide orchestration functions for application services. They include

automatic deployment and update, load balancing, scaling and self-healing.

The deployment and update function ensures that requested application services are deployed

and running in edge computing nodes. These application services can perform tasks varying from

simple data collection to real-time analytics or machine-learning inference. A load balancing

capability distribute tasks from clients over a set of containers or virtual machines. A logical

service can then be dynamically scaled up and down by adding or removing containers or virtual

machines based on overall loads.

The self-healing capability continuously monitors the health of nodes and application services.

For example, if a user requests three replicas of containerized or virtualized applications and an

edge computing node running one of the applications fails, the self-healing capability will

redeploy a replica of the application into a healthy node to attain the desired state.

5.2.3 INTERFACES BETWEEN APPLICATION SERVICE MODULE AND APPLICATION EXECUTION ENVIRONMENTS

An edge computing node runs a container runtime or a hypervisor that handles the lifecycle

operation of containers or virtual machines. The application service management module uses

this interface to request a lifecycle operation to a container runtime or a hypervisor. The

operations supported by this interface include pulling images, creating, deleting, starting and

stopping containers or virtual machines. For example, Kubernetes has a plugin interface for

container runtimes named the container runtime interface that defines the common operations

for containers and it allows the system to use a variety of container runtimes.

IIoT Distributed Computing in the Edge

 - 27 -

5.2.4 INTERFACES BETWEEN NODE MANAGEMENT AND TRUSTED COMPUTING MODULES

Two sets of interfaces exist between node management and trusted computing modules:

The Trusted Execution Environment (TEE) Management Interface is dominated by the

GlobalPlatform TEE Management Framework (TMF). The TMF defines standard methods to

manage the lifecycle of a TEE and the trusted application services running in the TEE via protocols

and interfaces accessed through either the GlobalPlatform TEE Client API or extensions to the

TEE Internal Core API. The framework is divided into three layers:

• Administration operations for managing the trusted application services, the security

domains and their conditions of use.

• Security Models for

o specifying the responsibilities and relations among the TEE implementer, the TEE

issuer and the trusted application providers,

o specifying the security mechanisms to authenticate various entities, secure

communications and authorize operations and

o specifying key management and data provisioning schemes.

• Open Trust Protocol (OTrP) for specifying the command set and the JSON encoding for

performing the administration operations.

Trusted Platform Modules (TPM) Management Interface for managing the operation of

cryptographic unit embedded in a trusted hardware platform. The following two interfaces are

of particular importance:

• TPM Key Management Standard, which specifies TPM key hierarchy, and key migration

models, structures and flows and

• Remote Attestation Procedures, which is being developed in the IETF Remote Attestation

Procedures (rats) working group.

5.3 CONTRACT OF INTEROPERABILITY

To on-board end devices, gateways and servers securely into a management system requires a

handshake. Zero-configuration, auto-discovery and self-describing interfaces provide this

handshake automatically and minimize the need for manual labor, which is especially costly in

the case of large networks of heterogeneous IIoT devices. These interfaces define a protocol for

the handshake between the device, as shipped by the vendor, and the management system.

Devices, upon power up or reset should authenticate, auto-configure, become part of the

network, be auto-discovered and securely on-boarded by the management system with little to

no manual intervention. They should declare their properties, actions and normal versus off-

normal vital signs (that is, be “self-describing”). This guides the management system towards the

proper monitoring of the device without prior knowledge of its details being hard coded or

manually configured.

https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_MgmtFramework_v1.0_PublicRelease.pdf
http://globalplatform.org/wp-content/uploads/2018/11/GPD_TMF_OTrP_Profile_v0.0.0.21_PublicReview.pdf
https://trustedcomputinggroup.org/resource/overview-of-the-tpm-key-management-standard/
https://datatracker.ietf.org/wg/rats/
https://datatracker.ietf.org/wg/rats/

IIoT Distributed Computing in the Edge

 - 28 -

Likewise, IIoT software components should provide a handshake so they can be monitored and

managed. EdgeX Foundry microservices are equipped with management APIs for this purpose.

Self-describing managed resources should be applied uniformly across both hardware and

software components, across all three tiers of the system. The provider of the component

develops and packages resource objects with the product as it is shipped. The self-description is

a schema based on a service or interface description language, or the equivalent. Web Services

Description Language (WSDL) is one example; OpenAPI Specification, based on the Swagger

specification using a REST APIs approach, is another. The description indicates parameters that

can be configured, and the vital signs to monitor including what constitutes normal versus off-

normal behavior. Standards groups will define APIs for the different types of managed objects to

further streamline this handshake and contract of interoperability for IIoT infrastructure

management.

5.4 EDGE COMPUTING NODE LIFECYCLE

Each edge computing node in this architecture has its own management lifecycle, which is

controlled by its node management module in conjunction with the system provisioning and

management module of the edge system. Together, they ensure that each edge computing node

goes through its lifecycle stages successfully, as outlined in Figure 5-2, with minimal human

intervention.

Figure 5-2: Management Lifecycle of an Edge Computing Node14

Commission is the earliest phase of the lifecycle. It includes installation, identification,

certification and calibration. The managed entity must:

• lay the groundwork for trustworthiness, with support for security, privacy, safety,

reliability and resilience that can be attested to and trusted in all phases of the lifecycle,

• be agile in their ability to collect data and monitor systems in the face of changing

requirements and operational conditions and

• open, to allow control and provide visibility into its resources.

Provision includes discovery, advertisement of features and capabilities, trust, updating software

and data structures, and deployment of features. This starts with secure on-boarding of an edge

14 Extracted from Fog Computing Reference Architecture, Figure 17

https://www.edgexfoundry.org/
https://www.w3.org/TR/wsdl20
https://www.w3.org/TR/wsdl20
https://www.openapis.org/
https://swagger.io/

IIoT Distributed Computing in the Edge

 - 29 -

device and making it accessible under its user interface. This may include the detection of sensors

and connections to servers.

If deployment-specific credentials must be configured during device manufacturing then each

such configuration is, in effect, a unique manufacturing SKU. These SKUs must be managed as

unique products through IoT supply chains from manufacturing, distribution, to systems

integration and installation. This uniqueness helps prevent the successful provisioning of

counterfeit or spoofed devices.

Operate covers the period when an edge computing node is in normal operation. After

connectivity from sensor-to-server through an edge device, the application management module

brings up the application services via a container runtime or a hypervisor. It monitors the devices

involved and monitors the virtualization stack and the application services components on top.

After the system is up and running and the application is acquiring and processing data, system

management evolves to control and monitor the system to ensure its steady state functioning.

This includes:

• querying or receiving the state of the different aspects of the system and displaying it,

• data ingestion of time-series metrics for vital sign monitoring and the detection of

abnormal or overload conditions,

• alerts, to include predicting, detecting and annunciating failures such as overloads and

• actuation to resolve or avoid failure by lowering the rate of time-series acquisition in

response to an overload alert or adjusting other operational parameters to maintain the

required system performance under load.

System management performs updates when a new version is available. When an update

operation is requested, an edge computing node initially pulls updated container or VM images

from a remote repository and then replaces old containers or VMs with new ones. Similar

mechanisms can update firmware, BIOS and FPGA configuration files. Rolling and rollback

updates are desirable capabilities for updating application services on edge computing nodes.

Rolling updates allow application services to be updated with zero downtime by incrementally

updating application service instances with new ones. If the state of an updated application

service is not stable, it can be rolled back to a previous version.

Recover includes the period when an edge computing node is operating out of expected norms.

It should attempt to isolate hardware and software components from failed nodes and self-heal

autonomously. Other edge computing nodes, or data center resources may also assist with the

recovery action, by performing various resets, restarts and reloads, moving computational loads

from failed or overloaded nodes to redundant nodes or redirecting critical data streams away

from failed storage devices or communications links.

Decommission covers a time when the node cleanses all personally identifiable and proprietary

data it may have stored from the hardware and prepares it for reuse another deployment. In

IIoT Distributed Computing in the Edge

 - 30 -

non-stop systems where short duration service outages can’t be tolerated, decommissioning one

node involves the seamless migration of its workloads and data to a replacement node. It includes

ways to wipe out all non-volatile storage so that future application services cannot access the

previous tenant’s data. De-commissioning physical nodes may involve recycling and site

restoration.

The system management and provisioning functions are essential to the operation of distributed

computing in the edge. With tens of millions of edge computing nodes deployed in the coming

years, without highly capable management, the deployment speed, labor investment, cost,

efficiency and customer satisfaction of edge computing will be unacceptable.

IIoT Distributed Computing in the Edge

 - 31 -

6 CONCLUSIONS

This distributed computing framework provides insights into the capabilities and architectures of

distributed computing, edge computing nodes and edge computing systems. Through the careful

application of the concepts and techniques described here, it is possible to meet the critical

performance, trustworthiness and efficiency requirements of many classes of IoT applications

serving many vertical markets.

The framework pays special attention to two of the most essential properties of distributed

computing and edge systems: end-to-end security and system management. The security

architecture shows how to start with a trusted computing module and build edge computing

node security up to a complete trustworthy system. The system management capabilities

described illustrate how to manage edge computing nodes and application services, supporting

capabilities like orchestration, resource management and the operation of distributed computing

workloads throughout their lifecycle.

There is much architectural work still needed to address all the challenges in distributed

computing in the edge. Beyond the security focus of this document, edge has implications for the

four other dimensions of trustworthiness defined by IIC (privacy, safety, reliability and resilience).

Performance and how to measure and optimize it is an ongoing challenge. Network complexity,

especially related to management is a strong contributor to total lifecycle cost of ownership of

distributed computing in the edge solutions, and much work is required there.

Distributed computing, and the nodes and edge systems that are its key components are

essential to the success of many critical IoT systems, and digital transformation plans. This

framework is a useful tool in planning its architecture, implementation, deployment, and

widespread adoption.

IIoT Distributed Computing in the Edge

 - 32 -

AUTHORS AND LEGAL NOTICE

This document is a joint work product of the Industrial Internet Consortium’s Fog Computing Task

Group and Distributed Computing Task Group co-chaired by Chuck Byers (IIC), John Zao (NCTU)

and Brett Murphy (RTI).

This work was started in the OpenFog Consortium, which combined with the Industrial Internet

Consortium in early 2019. We would like to acknowledge the OpenFog Consortium, its members,

staff and leadership for their contribution of many of the foundational concepts in this document.

Authors: John Zao (NCTU), Chuck Byers (IIC), Brett Murphy (RTI), Salim AbiEzzi (VMware) Don

Banks (ARM), Kyoungho An (RTI), Frank Michaud (Cisco Systems) and Katalin Bartfai-Walcott

(Intel).

Contributors: The following individuals have provided valuable comments and inputs that have

substantially improved the quality of this whitepaper: Helder Antunes (Cisco), Jeff Fedders (Intel),

Ron Zahavi (Microsoft), Lynne Canavan (OpenFog Consortium), Evan Birkhead (IIC), Craig Griffin

(Wind River), Arjmand Samuel (Microsoft, Clemens Vasters (Microsoft), Brian Raymor

(Microsoft), Maria Gorlatova (Princeton University), Jingyi Zhou (ZTE), Francois Ozog (Linaro), Tao

Zhang (Cisco), Mitch Tseng (Huawei), Todd Edmunds (Dell), Lalit Canaran (Ivado), K. Eric Harper

(ABB) and Stan Schneider (RTI).

Technical Editor: Stephen Mellor (IIC) oversaw the process of organizing the contributions of the

above Authors and Contributors into an integrated document.

Copyright© 2018 ~ 2020 Industrial Internet Consortium, a program of Object Management

Group, Inc. (“OMG”).

All copying, distribution and use are subject to the limited License, Permission, Disclaimer and

other terms stated in the Industrial Internet Consortium Use of Information: Terms, Conditions

& Notices. If you do not accept these Terms, you are not permitted to use the document.

http://www.iiconsortium.org/legal/index
http://www.iiconsortium.org/legal/index

IIoT Distributed Computing in the Edge

 - 33 -

In Memoriam: Brett Murphy

We lost a beloved colleague recently. I wanted to take this time

and space to express our gratitude for having the great fortune

to have known Brett Murphy in his too-short life and share how

important he has been to us.

Brett Murphy has been a member of the Industrial Internet

Consortium since Real-Time Innovations (RTI) joined within days

of our launch in 2014. But not only was Brett a member, he was

a trusted colleague, friend, key contributor, voice of reason and

shining light to us all.

Brett epitomized the true meaning of the word collaboration. In the many opportunities we had

to work with him and to see him in action at our meetings and events, he was a true team player.

He was always surrounded by members who were learning from each other and at the same time

developing new ideas that would raise everyone’s game. He was a spokesperson for those

informal groups and a leader of our formal groups. He brought his scientific and practical mind

to the strategic discussions that have shaped this consortium since its inception. We would not

have achieved as much as we have thus far, without Brett.

Brett was a Stanford alum, an engineer and a marketer. A technical expert and a visionary. He

was passionate and kind. He possessed a calming presence that was complemented by a quick

sense of humor and a mischievous streak that merged in the most wonderful, likable way. He

could provide the spark for a brainstorm or defuse the tension in the room. It’s why we found

him a joy to work with and were honored to call him our friend.

In consortia culture, where contributors offer their precious free time and intellect on top of their

day jobs, Brett was always willing to help. He applied his rock-solid reliability to his own brilliant

ideas, as well as when called upon to lead a new initiative, so others could learn and follow.

We know the dedication he shared with us was eclipsed by his dedication to his family. We share

Brett’s family’s and the RTI family’s grief and thank them for sharing Brett with us for these past

6 years. His contributions, and more importantly, his presence in our lives will never be forgotten.

Brett was a key contributor to this report. It is fitting that we memorialize him here.

Kathy Walsh, VP of Marketing, IIC

	1 Why Distribute Computing Towards the Edge?
	1.1 Business Benefits
	1.2 Desired Properties

	2 A Framework
	2.1 Edge Systems
	2.2 Communication Pathways
	2.3 Deployment Models
	2.4 Supporting Technologies

	3 Trusted Computing Module
	3.1 Booting Trusted Hardware
	3.1.1 Trusted Hardware
	3.1.2 Trustworthiness of Boot Process
	3.1.3 Trusted Execution Environment

	3.2 Application Execution Environments
	3.3 Interfaces

	4 End-to-End Security Module
	4.1 End-to-End Security Services
	4.2 System Security Management
	4.3 Interfaces

	5 System Management and Provisioning Modules
	5.1 Components
	5.2 Interfaces
	5.2.1 Node Management Module Interface
	5.2.2 Application Service Module Interface
	5.2.3 Interfaces between Application Service Module and Application Execution Environments
	5.2.4 Interfaces between Node Management and Trusted Computing Modules

	5.3 Contract of Interoperability
	5.4 Edge Computing Node Lifecycle

	6 Conclusions
	Authors and Legal Notice
	In Memoriam: Brett Murphy

